Cumulative Subject Index¹ # Volumes 139-144 #### A ### Acetaldehyde aldolization on single crystal and polycrystalline TiO₂ surfaces, C-C bond formation via, 139, 119 oxidation of ethanol to, catalytic activity of H₃PMo₁₂O₄₀-blended polysulfone film, **144**, 348 Acetic acid on Rh(110), stabilization and autocatalytic decomposition, 142, 630 role in Pd-catalyzed vapor-phase synthesis of vinyl acetate, DRIFTS-mass spectrometric and kinetic analyses, **142**, 312 ### Acetonitrile hydrogenation, deactivation of Ni catalysts, 143, 187 synthesis from CO, H₂, and NH₃ over iron catalysts, 139, 392 # Acetophenones reduction over Pd/AlPO₄ catalysts, linear free energy relationship, 140, 335 ## Acetoxylation benzylic, heterogenous catalyzed, methylated aromatic hydrocarbons on Pd/charcoal catalysts, 140, 311 ## Acetylene in desorption enhancement of gas-phase CO from Pd/Al₂O₃ catalysts, analysis by radioactive tracer technique, **143**, 381 ## Acid catalysis -base catalysis, reactions on zeolites, compensation effect, 142, 97 isobutane and N-pentane over CuY zeolites, 141, 323 in rearrangement of *n*-methylaniline over H-ZSM-5, H-Theta-1, and H-Y, 143, 627 ## Acid catalysts glasses of alkaline earth metaphosphates as, comparison with crystalline catalysts, 139, 568 ## Acid function Ga-H-ZSM-5 in propane conversion, effect of aging, analysis with pyridine as infrared probe, 139, 679 ## Acidity and catalytic activity, AlPO₄-5, AlPO₄-14, MeAPSO-44, and SAPO-44 molecular sieves in methanol dehydration, 139, 351 and catalytic properties, VPI-5, 141, 140 fluorine-mediated Al₂O₃-pillared fluorohectorite, 139, 664 H-Y zeolites, role of extralattice Al, 139, 468 Lewis sites, scaling with EPR and NMR probes, 140, 497 protonic, H-SAPO-37 and HY, quantitative study by infrared spectroscopy with benzene as probe, 139, 81 Pt-H-ZSM-5-Al₂O₃ catalyst, effect of coke deposition, **144**, 16 and reactivity, for cumene, conversion, over metal polyoxocation pillar interlayered clay minerals, 141, 239 ### surface effect of sulfate-doped ZrO₂ catalysts, **142**, 349 effect on piperdine denitrogenation on Al₂O₃ SiO₂, and SiO₂-Al₂O₃, **137**, 453; letter to editor, **141**, 316; reply, **141**, 318 ### Acid sites on boralites, analysis by TPD of NH₃, C₂H₄, and 1-C₄H₈, 144, 285 Bronstead and Lewis, in MAPO-36 molecular sieve, analysis by IR spectroscopy on pyridine, **143**, 227 Lewis, scaling of strength by EPR and NMR probes, 140, 497 pyridine absorbed on, infrared absorption bands, integrated molar extinction coefficients, **141**, 347 ## Acrylonitrile from propane on $(VO)_2P_2O_7$ with preadsorbed NH_3 ammonia adsorption mechanism and reaction with C_3 , 142, 84 selectivity determination, role of competitive adsorption phenomena, 142, 70 ## Active sites distribution in ZSM-5 zeolites, analysis by FTIR microscopy, 143, 388 for oxidative coupling of CH₄ on pure and Li-promoted MgO catalysts, analysis, 140, 344 ## Adamantane isomerization of alkanes on sulfated zirconia, promotion, 144, 238 ## Adsorption CO on Pt/nonacidic zeolite catalysts, 141, 465 CO and O₂, on Pt/Al₂O₃, Pt/MoO₃, and Pt/SiO₂ catalysts, **139**, 207 ¹ Boldface numbers indicate appropriate volume; lightface numbers indicate pagination. and dissociation, methyl halides on SiO₂-supported Pd, infrared spectroscopic analysis, **143**, 138 gas on ZnO, ESR, FTIR spectroscopy, and Microwave Hall Effect analysis, 140, 585 hydrocarbons on Pt/Al₂O₃, Pt/MoO₃, and Pt/SiO₂ catalysts, **139**, in zeolites, pseudocomponent test, 140, 41 irreversible, CO on CeO₂, in formation of linear hydrocarbons, **141**, 533 methanol and methyl formate on K-promoted Cu/ SiO₂ catalysts, FTIR analysis, **142**, 263 nitrosobenzene and nitrobenzene, surface reactions, analysis by infrared spectroscopic, 141, 82 NO on Ru/ZnO catalyst, 141, 486 oxygen on Ag(111), role of chlorine, 140, 370 Agglomeration Pd particles in Pd/H-ZSM-5 catalysts, induction by hydrocarbons, 140, 481 and phase transition, nanophase iron oxide catalyst, 143, 510 Aging effect on dehydrogenating and acid functions in propane conversion over Ga-H-ZSM-5, analysis with pyridine as infrared probe, 139, 679 high-temperature, effects on Rh/Al₂O₃ dispersion, 144, 296 high-temperature oxygen, Rh/Al₂O₃, subsequent characterization by XAFS, **144**, 311 Alcohol coupling and dehydration, to ethers, methanol and 2-methyl-1-propanol over Nafion H: selectivity, kinetics, and mechanism, 139, 406 Alcohols synthesis from syngas: structure, distribution, and effect of K/MoS₂ catalyst alkali promoter, **142**, 672 Aldehydes conversion to 1,1-diacetate, catalysis by H-ZSM-5 and tungstosilicic acid, 141, 308 Aldolization acetaldehyde, on single crystal and polycrystalline TiO₂ surfaces, C-C bond formation via, 139, 119 Alkadiene hydrogenation, interaction of vacancies and H species, selectivity on Cu-based H reservoirs, 144, 544 Alkali cations, zeolites with, catalysis of bimolecular condensation of ethanol to 1-butanol, 142, 37 promoter in K/MoS₂ catalysts, structure, distribution, and effects on alcohol synthesis from syngas, 142, 672 Alkali metals and alkaline earth, SiO₂-supported binary catalysts, oxidative coupling of CH₄, cation effect, **142**, 45 based compounds, promoted ZrO₂ catalysts, oxidative coupling of CH₄ over, **139**, 304 catalysts, graphite gasification by CO₂ and H₂O, 141, 102 Alkaline earth metals catalysts, graphite gasification by CO₂ and H₂O, analysis, 141, 102 Alkaline earths and alkali metals, SiO₂-supported binary catalysts, oxidative coupling of CH₄, cation effect, **142**, 45 Alkanes and arenes, H₂O₂ oxidation to alkyl peroxides and phenols, catalysis by vanadate-pyrazine-2-carboxylic acid, **142**, 147 dehydrocyclodimerization catalysts, gallium in, analysis by in situ Ga K-edge X-ray absorption spectroscopy, 140, 209 isomerization on sulfated zirconia, promotion by Pt and adamantyl hydride transfer species, 144, 238 oxidation over $Mg_3(VO_4)_2-MgO$, $Mg_2V_2O_7$, and $(VO)_2P_2O_7$, selectivity patterns, **140**, 226 transformation of supported Pt catalysts, reactions of propane and *n*-butane hydrogenolysis, **142**, 512 n-Alkanes selective oxidation over VS-2, 141, 604 Alkenes production in fixed bed reactor, Fischer-Tropsch reaction studies with supported Ru catalysts, 143, 166 Alkylation piperidine on Al₂O₃, SiO₂, and SiO₂-Al₂O₃, effects of surface acidity, **137**, 453; letter to editor, **141**, 316; reply, **141**, 318 Alkyl peroxides and phenols, H_2O_2 oxidation of alkanes and arenes to, catalysis by vanadate-pyrazine-2-carboxylic acid, 142, 147 Alloys amorphous Pd-Zr, Pd/Zr₂ catalyst prepared from, CH₄ oxidation over, **141**, 494 Pd-Co/SiO₂-supported catalysts for neopentane conversion, homogeneity, surface composition, and activity, **142**, 617 Alumina, see Aluminum oxide Aluminum Al₁₃- and GaAl₁₂-pillar interlayered clay minerals, and Ga-H-ZSM-5 zeolite, propane dehydrocyclodimerization, comparison, **142**, 448 extralattice, role in acidity of H-Y zeolites, 139, migration in USY catalysts, electron microscopic analysis, 140, 395 pillared montmorillonites, acidity and reactivity for cumene conversion, 141, 239 Aluminum fluoride support of Pd catalysts, dichlorodifluoromethane conversion under hydrogen, 141, 21 Aluminum oxide catalysts, deactivation and regeneration, for rear- rangement of cyclohexanone oxime into caprolactum, 142, 172 clusters Mg pillared with, effect of vanadium, 141, 510 montmorillonites pillared with, characterization with atomic force microscopy, 142, 337 Fe₃(CO)₁₂ precipitation on, in derivation of highly dispersed Fe catalysts, EXAFS preparation and analysis, **141**, 660 fluorided, characterization by ²⁷Al NMR, FT-IR, and ethanol-¹⁸O TPD, **140**, 84 fluorine-doped catalysts, analysis by ultrasoft X-ray absorption spectroscopy, 142, 368 fluorohectorite pillard with, fluorine-mediated acidity, 139, 664 -H-ZSM-5-Pt catalysts, acidity, intercrystalline mass transfer, and catalytic properties, effect of coke deposition, 144, 16 modification of EUROPT-1, reaction of propane and *n*-butane on, **142**, 512 and SiO₂, amorphous, pyridine absorbed on, infrared absorption bands, integrated molar extinction coefficients, **141**, 347 and SiO₂-Al₂O₃, piperidine denitrogenation on, effects of surface acidity, 137, 453; letter to editor, 141, 316; reply, 141, 318 SO₄-supported catalysts, Lewis site acid strength, scaling by EPR and NMR, 140, 497 support of Ba cataysts, oxidative coupling of CH₄, 143, 286 Co catalysts thiophene hydrodesulferization, effect of passivation, 144, 579 Co and Co-Mo catalysts hydrodesulfurization of dibenzothiophene, mechanism, analysis with ³⁵S tracer, **143**, 239 sulfidation, analysis by Mössbauer emission spectroscopy, **143**, 601 Co/Mo catalysts, in deep hydrodesulfurization of benzothiophene and dibenzothiophene, effects of solvents, 140, 184 CrO₃, surface chemistry analysis by Raman spectroscopy, **142**, 166 Cr₂O₃, deactivation by coke in butene dehydrogenation, **142**, 59 Cu/ZnO catalysts, comparison of methanol synthesis from CO/H₂ and CO₂/H₂, **144**, 414 Mo-based catalysts FTIR morphology and structure of calcined and sulfided catalysts, 139, 631 FTIR SH group presence and role in acidity and activity, 139, 641 Mo catalysts analysis of CO₂ chemisorption, 144, 636 thiophene hydrodesulferization, effect of passivation, 144, 579 unreduced system, analysis, 142, 110 MoO₃ catalysts, mechanical mixtures, surface species formation, 141, 48 Mo and W catalysts, effects of F and Mg on catalyst dispersion, 139, 72 Mo, W, V, Cr, and Re catalysts, in chemisorption of CO₂, 139, 688 Ni, nonequilibrium oxidative conversion of CH_4 to H_2 and CO at low temperatures with high selectivity and productivity, 139, 326 Ni-Mo catalysts, reducibility: TPR study, 139, 540 Ni_xRu_{1-x} catalyst, characterization and catalytic properties, 142, 455 Pd catalysts dichlorodifluoromethane conversion under hydrogen, 141, 21 reforming reactions on, mechanisms, 139, 234 Pd catalysts, analysis by radioactive tracer techniques, enhanced CO desorption due to effect of C_2H_2 and NO in gas phase, 143, 381 CO in gas phase, 143, 369 Pt and Pt-Re catalysts, coke and product profiles, modification in n-heptane reforming, 141, 389 Pt and Pt-Rh catalysts CO oxidation over, FTIR analysis, 142, 153 Pt-Au catalysts, preparation, characterization, and dehydrogenation activity, 144, 30 Pt catalysts benzene hydrogenation, 143, 539 catalyst preparation and physical characterization, 139, 191 catalyst preparation by sol-gel method, 144, 395 CO hydrogenation, roll of spillover, **139**, 421 CO and O₂ adsorption, **139**, 207 enantioselective hydrogenation of ethyl pyruvate: kinetic modeling of Pt catalyst modification by cinchona alkaloids, 144, 569 hydrocarbon adsorption, 139, 221 liquid-phase hydrogenation of α,β -unsaturated aldehydes, effects of O₂ and Fe, 142, 490 toluene hydrogenation, 143, 554, 563 Pt and Pt-CeO₂ catalysts for CO oxidation by O₂ effect of pretreatment step on oxidation mechanism, 141, 9 reactivity: catalyst characterization by TPR with CO as reducing agent, 141, 1 Pt-Sn reforming catalysts, analysis by Mössbauer spectroscopy, 142, 641 Pt-WO₃ catalysts, reactions of labeled hexanes, 139, 256 Re₂O₇ catalysts, analysis by Raman spectroscopy, 141, 419 Rh catalysts dispersion, effects of high-temperature aging, 144, 296 interaction with C₇H₈ and benzene, **143**, 175 interaction with CO and H₂, effect of carrier, **140**, 353 methanation of CO and CO₂ with pulsed-flow microreactors, 143, 308 XAFS analysis after treatment in high-temperature oxidizing environments, 144, 311 Rh/Mo catalysts, Rh-Mo interaction, 141, 478 Rh and Rh/Ce catalysts, microstructural changes and volatilization in NO and CO, 140, 424 α-Aluminum oxide support of Ag catalysts metal surface area for, effect of loading, 139, 41 oxygen adsorption, analysis by microgravimetric and transient techniques, 143, 481 Pt catalysts, CO oxidation, structure sensitivity, 140, 418 η-Aluminum oxide support of Pt catalysts benzene hydrogenation, 143, 539 toluene hydrogenation, 143, 554, 563 y-Aluminum oxide benzoyl compounds on, surface chemistry, FTIR analysis, 143, 573 nitrosobenzene and nitrobenzene adsorption and surface reactions, infrared spectroscopic analysis, 141, 82 $-Re_2O_7$ catalysts for metathesis of propene, activity, effect of calcination temperature, 144, 472 support of Fe₂O₃-V₂O₅ catalysts: catalyst interactions under high-temperature calcination and SO₂ oxidation conditions, **139**, 1 Mo catalysts prepared via metal complex precursors sorption of metal complexes by support surface, 139, 142 synthesis and activity in propene metathesis, 139, 134 model Re-Pt catalyst prepared from [Re₂Pt (CO)₁₂]: catalyst synthesis and spectroscopic characterization, 140, 190 MoS₂ hydroprocessing catalysts prepared by precipitation from homogenous solution method, characterization, 142, 121 Pt catalysts H₂ temperature-programmed desorption, 143, 395 propane oxidation over, effect of sulfation, 144, 484 and Pt zeolite β catalysts, reforming reactions, comparison, 140, 526 sintering in NO, observation by CO TPD and TEM, 144, 60 Ru catalysts, Fischer-Tropsch reaction studies, production of alkenes and high-molecular-weight hydrocarbons in fixed-bed reactor, 143, 166 # Aluminum phosphate support of, Pd catalysts, acetophenone reduction, linear free energy relationship, 140, 335 Ammonia and CO and H₂, acetonitrile synthesis from, over iron catalysts, 139, 392 oxidation in selective catalytic reduction of NO over V catalysts, 142, 182 preadsorbed, (VO)₂P₂O₇ propane on, acrylonitrile from selectivity determination, role of competitive adsorption phenomena, 142, 70 with, acrylonitrile from propane on adsorption mechanism and reaction with C₃, 142, 84 selective catalytic reduction of NO over Fe-Y zeolites, kinetic and infrared spectroscopic analysis, 142, 572 SO₄⁻²/TiO₂ superacid catalyst, **139**, 277 synthesis over Ru zeolite catalysts, 141, 191 TPD, in analysis of acid sites on borolites, 144, 285 Aniline oxidative carbonylation with Mn-based catalysts, 143, 631 Aquocomplexes Pd, formation with Pd-mordenite catalyst precursor, 143, 314 Arenes and alkanes, H₂O₂ oxidation to alkyl peroxides and phenols, catalysis by vanadate-pyrazine-2-carboxylic acid, **142**, 147 Argon sorption in ZSM-5, 139, 19 Aromatization hexane, Pt/KL catalysts for, performance and Pt particle size and location, effect of sulfur, 139, 48 over Pd/Al₂O₃ catalysts, mechanisms, **139**, 234 and reforming catalyst models for intermetallic Pt-Cr clusters in zeolites oxidation states, dispersion, and local structure, characterization, 141, 250 structure-function relationships, 141, 266 Atomic force microscopy in analysis of catalyzed carbon gasification, 140, 543 H₂ gasification of MoS₂, 144, 77 pillared montmorillonites, 142, 337 R **Barium** -Bi and Ba-Pb and Ba-Sn perovskites, catalytic partial oxidation of CH₄ over, 139, 652 and Ca and Mg, metaphosphate glasses, as acid catalysts, comparison with crystalline catalysts, 139, 568 MgO-, CaO-, ZnO-, Al_2O_3 -supported catalysts, oxidative coupling of CH_4 , 143, 286 Base catalysis -acid catalysis, reactions on zeolites, compensation effect, 142, 97 ### Benzaldehyde surface chemistry on oxides, FTIR analysis, 143, ## Benzene and C_7H_8 , interaction with Rh on SiO_2 , Al_2O_3 , and TiO_3 carriers, 143, 175 ### hydrogenation aromatic hydrocarbons over supported Pt catalysts, reaction models for metal surfaces and acidic sites on oxide supports, 143, 563 reactor for, cyclic operation, analysis, 136, 242; letter to editor, 144, 358; reply, 144, 360 over supported Pt catalysts, 143, 539 as probe in quantitative infrared study of protonic acidity of H-SAPO-37 and HY, 139, 81 ## Benzenethiol diphenyldisulfide reduction to, catalytic activities in, 144, 160 ### Benzothiophene CoMo/Al₂O₃-catalyzed deep hydrodesulfurization, effects of solvents, **140**, 184 ## Bialkali metals and MgO superbasic catalysts, effects on oxidative coupling of CH₄, 141, 628 ### Bimolecular catalysts Monte Carlo modeling, trigger mechanism of selfoscillations and effect of molecular self-organization, **142**, 198 ## Biporous pellet catalysts effectiveness, effect of shape, 141, 737 ### Bismuth - Ba perovskites, catalytic partial oxidation of CH₄ over, 139, 652 - -K-graphite intercalation compound, as catalyst for styrene synthesis, 144, 627 - molybdates, and mixed Co and Fe molybdates, in mild oxidation of propene, synergy effect, 142, 381 ## Bond energy effects in CH₄ oxidative coupling over pyrochlore structures, 140, 328 ## Book review Rate Equations of Solid-Catalyzed Reactions. R. Mezaki and H. Inoue (Eds.), 1991, 141, 740 ## Boron ZSM-5 zeolites containing, acid site analysis by TPD of NH₃, C₂H₄, and 1-C₄H₈, 144, 285 ## Butadiene oxidation of molybdovanaphosphoric acid, effect of V in primary and secondary structure, **143**, 325 1.3-Butadiene effect on film structure of Pd thin-film catalysts, scanning tunneling microscopic analysis, 143, 409 ## Butane effect on film structure of Pd thin-film catalysts, scanning tunneling microscopic analysis, 143, 409 hydrogenolysis over $Pt-Mo/SiO_2$ catalysts, kinetics, 144, 118 Pt/SiO_2 catalysts, modification by TiO_2 and Al_2O_3 , 142, 512 #### oxidation effect of V₂O₅ loading on SiO₂, 144, 202 and phase equilibria, in analysis of MgO-V₂O₅-MoO₃ system, **144**, 597 selective, to maleic anhydride on VPO catalyst, effects of Zr, 143, 215 oxidation of molybdovanaphosphoric acid, effect of V in primary and secondary structure, 143, 325 n-Butane, see Butane 1-Butanol, see n-Butyl alcohol #### 1-Butene effect on film structure of Pd thin-film catalysts, scanning tunneling microscopic analysis, 143, 409 isomerization and metathesis over unreduced Mo/ Al₂O₃ catalysts, analysis, 142, 110 TPD, in analysis of acid sites on borolites, 144, 285 Butenes dehydrogenation, Cr₂O₃/Al₂O₃ catalyst deactivation by coke during, **142**, 59 hydrogenation of mixtures over Pd/ZnO catalysts, 141, 566 oxidation, and proximity of Mo redox sites, 142, 735 *n*-Butyl alcohol ammonolysis, and dehydration of butylamine over Mo₂N, in synthesis of butyronitrile, **142**, 430 ethanol bimolecular condensation to, catalysis by alkali cation zeolites, 142, 37 ## Butylamine dehydration, and ammonolysis of butylalcohol over Mo₂N, in synthesis of butyronitrile, **142**, 430 *tert*-Butyl hydroperoxide decomposition, catalytic activity of Fe porphyrin complexes for, halogen substituent effects, 141, 311 ## iso-Butyraldehyde and n-Butyraldehyde, formation from propylene hydroformylation on Rh/SiO₂ and sulfided Rh/ SiO₂, infrared analysis, **144**, 131 # n-Butyraldehyde and iso-butyraldehyde, formation from propylene hydroformylation on Rh/SiO₂ and sulfided Rh/SiO₂, infrared analysis, **144**, 131 # Butyronitrile synthesis via ammonolysis of butylalcohol and dehydrogenation of butylamine over Mo₂N, 142, 430 C ## Calcination effect on H₂ spillover in Pt/MoO₃ catalysts characterization and kinetics, 139, 153 kinetic modeling, 139, 175 high-temperature, Al₂-supported Fe₂O₃-V₂O₅ catalysts subjected to, interactions, 139, 1 induced surface enrichment of impurities, effect on catalytic properties of iron oxide, 141, 161 temperature, effect on activity of Re_2O_7/γ - Al_2O_3 catalysts for metathesis of propene, 144, 472 ### Calcium and Ba and Mg, metaphosphate glasses, as acid catalysts, comparison with crystalline catalysts, 139, 568 Ca-Ni-K, oxide catalysts for CH₄ oxidative coupling, analysis by TPIE, 142, 697 surface enrichment of, calcination-induced, effect on catalytic properties of iron oxide, 141, 161 #### Calcium oxide support of Ba cataysts, oxidative coupling of CH₄, 143, 286 ## Caprolactum cyclohexanone oxime rearrangement into, Al₂O₃ catalysts for, deactivation and regeneration, **142**, 172 #### Carbon charcoal, support of platinum catalysts, kinetics of stereoselective thymol hydrogenation, 140, 30 deposition on Co catalysts, relationship to S adsorp- gasification, catalyzed, analysis by scanning tunneling and atomic force microscopy, 140, 543 support of Ni catalyst, regeneration by steam treatment and subsequent hydrogen reduction, 140, 168 Ni and Ni-W sulfided catalysts, Ni and W environment, 139, 525 ## Carbon-carbon bonds tion, 143, 449 formation via aldolization of acetaldehyde on single crystal and polycrystalline TiO₂ surfaces, 139, initial formation, CO and ketene role, in CH₄ conversion to hydrocarbons over zeolite H-ZSM-5, 142, 602 ## Carbon dioxide ## adsorption and reaction, on NaX zeolite, Pt/NaX, and Pt, effects of oxidizing and reducing pretreatment, microcalorimetric study, 140, 443 on ZnO, ESR, FTIR spectroscopy, and Microwave Hall Effect analysis, 140, 585 ## chemisorption on Al₂O₃-supported catalysts, 139, 688 supported molybdena-alumina catalysts, analysis, 144, 636 ## and CO hydrogenation reactivity of Rh foil for, effects of VO_X deposits, 139, 602 interactions with Cu/SiO₂, analysis by infrared spectroscopy, 142, 27 methanation over Rh/Al₂O₃ catalyst with pulsedflow microreactors, 143, 308 dilution, effect on 2-methylpentane cracking on HY zeolite, 144, 377 and H₂ and CO, interactions with Cu/SiO₂, analysis by TPD, **144**, 227 hydrogenation, and CO/H₂, methanol synthesis over Cu/ZnO/Al₂O₃ catalyst, comparison, **144**, 414 interaction with Rh supported catalysts, effect of carrier, **140**, 353 reaction with activated CH₄ over supported Rh catalysts, 141, 287 reforming of CH₄ over transition metals, 144, 38 Carbon disulfide hydrodenitrogenation reactions due to side reactions with, catalytic tests for, secondary effects, 142, 725 #### Carbon monoxide activation, effects on surface composition of Febased Fischer-Tropsch catalysts, 140, 136 adsorption on Pt/Al_2O_3 , Pt/MoO_3 , and Pt/SiO_2 catalysts, 139, 207 Pt/-zeolite catalysts, analysis by infrared spectroscopy, 141, 465 small supported Rh particles, SSIMS and TPD analyses, 143, 492 ZnO, ESR, FTIR spectroscopy, and Microwave Hall Effect analysis, 140, 585 ## chemisorption on Cu films on ZnO, TPD analysis, 141, 380 Rh/La₂O₃ catalysts, effect of alkali promotion, 140, 453 Rh/SiO₂, catalyst characterization with quantitative FTIR, 139, 551 ## and CO hydrogenation reactivity of Rh foil for, effects of VO_X deposits, 139, 602 interactions with Cu/SiO₂, analysis by infrared spectroscopy, **142**, 27 methanation over Rh/Al₂O₃ catalyst with pulsedflow microreactors, 143, 308 and CO-O₂ mixtures, FTIR analysis: bimetallic particle formation in Cu-Ru/MgO catalysts, **142**, 437 # desorption enhancement kinetics, in gas-phase analysis by radioactive tracer technique, 143, 369 from Pd/Al_2O_3 catalysts, effect of C_2H_2 and NO in gas phase, analysis by radioactive tracer technique, 143, 381 dilution, effect on 2-methylpentane cracking on HY zeolite, 144, 377 -ethene, adsorption on Pt/Al_2O_3 , Pt/MoO_3 , and Pt/SiO_2 catalysts, 139, 221 # and H₂ and CO₂, interactions with Cu/SiO₂, analysis by TPD, 144, 227 H₂ reactant ratio, and olefin readsorption, role in hydrocarbon chain growth on Ru catalysts, 139, 576 interaction with bimetallic Ag/Ru(1010) surfaces, 139, 611 nonequilibrium oxidative conversion of CH₄ to, over Ni/Al₂O₃ at low temperatures: high selectivity and productivity, **139**, 326 and H₂ and NH₃, acetonitrile synthesis from, over iron catalysts, **139**, 392 ### hydrogenation over Al₂O₃-supported Pt, role of spillover, **139**, 421 CeO₂, in situ FTIR analysis, **141**, 540 Co/H₂ and CO/H₂ in methanol synthesis over CO/H₂, and CO₂/H₂, in methanol synthesis over Cu/ZnO/Al₂O₃ catalyst, comparison, **144**, 414 PdCo/NaY catalysts: effect of ion hydration on metal phases and selectivity, 139, 444 selective catalysis, synthesis, and characterization in Ir carbonyl clusters in NaX zeolite cages, 142, 585 structural transformation during, effect of NiO morphology, **144**, 50 and TPR, La₂O₃-promoted Rh/SiO₂ catalysts, 144, 439 zeolite-supported Ru catalysts, effect of dealumination, 142, 531 -hydrogen reactions over Ru/SiO₂ at high pressure and temperature, in situ FTIR analysis, **141**, 355 induced changes in oxidation state of Rh/MgO catalysts, XPS study, 140, 564 Rh crystallites, mechanisms, kinetics, and realspace imaging on atomic scale, 144, 525 and ketene, in formation of initial C-C bond, in CH₄ conversion to hydrocarbons over zeolite H-ZSM-5, 142, 602 and O₂, adsorption and reaction on NaX zeolite, Pt/ NaX, and Pt, effects of oxidizing and reducing pretreatment, microcalorimetric study, **140**, 443 oxidation by NO over Rh(111) catalyst, 144, 9 oxide solid solution catalysts, properties, 140, 557 oxidation over low-temperature TiO_2 -, α - Fe_2O_3 -, and Co_3O_4 -supported Au catalysts, **144**, 175 low-temperature two-component catalyst, Monte Carlo analysis, **141**, 219 Pt/Al₂O₃ and Pt-CeO₂/Al₂O₃ catalysts effect of pretreatment step on oxidation mechanism, 141, 9 reactivity: catalyst characterization by TPR with CO as reducing agent, 141, 1 Pt/α-Al₂O₃ catalysts, structure sensitivity, **140**, 418 Pt-Rh catalysts, FTIR analysis, **142**, 153 promotional effect on ethylene decomposition over Fe catalyst, 144, 93 removal from H-rich fuel cell feedstreams by selective catalytic oxidation, 142, 254 and Rh⁺(CO)₂, interactions with C₂H₄ and H₂, 139, second oxidation mechanism on Rh/CeO₂, 143, 86 strong adsorption on CeO₂ in formation of linear hy- drocarbons over partially reduced CeO₂, 141, 533 unsteady-state methanation on Ni/SiO₂ catalyst, 139, 62 ## Carbon tetrachloride effects on CH₄ oxidative dehydrogenation with oxides of La, Ce, Sm, and Pr as catalysts, **139**, 338 Carbonylation oxidative, aniline with Mn-based catalysts, 143, 631 Catalytic ignition H₂-O₂ reaction on Pt, analysis, 141, 438 Cations alkali and alkaline earth, SiO₂-supported, effect in oxidative coupling of CH₄, 142, 45 density, effect on ZSM-5 zeolite diffusivity, 144, 109 exchange, effect on acidity, activity, and selectivity of faujasite cracking catalysts, 143, 594 ## CAVERN apparatus shallow-bed, for *in situ* solid-state NMR analysis of catalytic reactions, **141**, 733 ## Ceric oxide and oxides of La, Pr, and Sm, as catalysts for oxidative dehydrogenation of CH₄, comparison: effect of CCl₄, 139, 338 partial reduction, CO strong adsorption on, in formation linear hydrocarbons over, 141, 533 -Pt, Al₂O₃-supported catalysts in CO oxidation by O₂ effect of pretreatment step on oxidation mechanism, 141, 9 reactivity: catalyst characterization by TPR with CO as reducing agent, 141, 1 Rh doped, water-gas shift reaction, reactant-promoted reaction mechanism for, 141, 71 support of Rh catalysts evidence for low-temperature O₂ migration from CeO₂ to Rh, 139, 561 second CO oxidation mechanism, 143, 86 ## Cerium Rh catalysts, SiO₂- and Al₂O₃-supported, microstructural changes and volatilization in NO and CO, 140, 424 ## Cerium dioxide crystallite size, TPR, 103, 502; erratum, 140, 612 Cerium oxide CO hydrogenation over, in situ FTIR analysis, 141, 540 ## Cesium fluid cracking catalyst with, preparation and characterization, 143, 304 # Chain growth during Fischer-Tropsch synthesis over Ru/TiO₂: estimates of rate coefficients for chain initiation, propagation, and termination, 139, 104 ## Chain processes role in 2-methylpentane cracking on USHY zeolites, 140, 243 ## Charcoal support of Pd catalysts, benzylic acetoxylation of toluene to benzyl acetate, 140, 311 Chemisorption in analysis of Rh-Mo interaction in Rh/Mo/Al₂O₃, 141, 478 CO and H₂O on Rh/La₂O₃ catalysts, effect of alkali promotion, **140**, 453 CO₂ over Al₂O₃-supported catalysts, 139, 688 supported molybdena-alumina catalysts, analysis, 144, 636 O₂ on TiO₂-based catalysts, dynamic ESR analysis, 142, 719 Chlorination and fluorination, 1-chloro-1,2,2,2-tetrafluoroethane, kinetics, 142, 289 Chlorine role in oxygen adsorption on Ag(III), 140, 370 Chlorodifluoromethane Cr₂O₃- and Cr₂O₃(C)-catalyzed disproportionation, mechanism study, 140, 103 1-Chloro-1,2,2,2-tetrafluoroethane fluorination and chlorination, kinetics, 142, 289 Chromia, see Chromic oxide Chromic oxide Al₂O₃-supported catalysts, deactivation by coke in butene dehydrogenation, **142**, 59 catalyzed disproportionation of CHF₂Cl, mechanism, 140, 103 -TiO₂ catalysts, preparation, chemical and structural changes during, EPR study, 143, 201 Chromium Al₂O₃-supported catalyst in chemisorption of CO₂, 139, 688 pillared montmorillonites, acidity and reactivity for cumene conversion, 141, 239 -pillar interlayered clay minerals, and Ga-H-ZSM-5 zeolite, in propane dehydrocyclodimerization, comparison, 142, 448 -Pt clusters, intermetallic, in zeolites, aromatization and reforming catalyst models oxidation states, dispersion, and local structures, characterization, 141, 250 structure-function relationships, 141, 266 Chromium trioxide Al₂O₃-, MgO-, Nb₂-, SiO₂-, TiO₂-, and ZrO₂-supported catalysts, surface chemistry analysis by Raman spectroscopy, 142, 166 Cinnamaldehyde liquid-phase hydrogenation on Pt/Al, effect of $\rm O_2$ and Fe, 142, 490 Clays pillared rectorite catalysts, effect of V, 141, 510 Coadsorbates in reverse water-gas shift reaction on ZnO reactantpromoted reaction mechanism, 140, 575 Coadsorption H, effect on thermal chemistry of methyl iodide on Ni(100) surfaces, 144, 361 Cobalt Al₂O₃-supported catalysts and Co/Al₂O₃ catalysts, sulfidation, analysis by Mössbauer emission spectroscopy, 143, 601 thiophene hydrodesulferization, effect of passivation, 144, 579 catalysts, S adsorption and C deposition on, relationship, 143, 449 in catalytic reduction of MoS₂ in presence of hydrogen, analysis by *in situ* electron microscopy, 141, 171 catalyzed Fischer-Tropsch products, telomerization model, 139, 591 and Co-Mo, Al₂O₃-supported catalysts hydrodesulfurization of dibenzothiophene, mechanism, analysis with ³⁵S tracer, **143**, 239 sulfidation, analysis by Mössbauer emission spectroscopy, 143, 601 Co₉S₈, and NiMoS, synergy in hydrogenation of cyclohexene and hydrodesulfurization of thiophene, 139, 371 exchanged ZSM-5, selective reduction of NO over, effect of water vapor, 142, 561 and Fe molybdates mixed, synergy effect with Bi molybdates in mild oxidation of propene, 142, 381 multiphasic, valence states and solubility limits in mixed, molybdate-based catalysts, electrical conductivity analysis, 142, 373 foil and thin film model catalysts, CO hydrogenation, 142, 206 -Mo Al₂O₃-supported catalysts, in deep hydrodesulfurization of benzothiophene and dibenzothiophene, effects of solvents, 140, 184 -Pd, SiO₂-supported alloys structure and activity, 142, 617 structure and activity: n-hexane and methylcyclopentane skeletal reactions, 143, 583 -Pd/NaY catalysts, CO hydrogenation on: effect of ion hydration on metal phases and selectivity, 139, 444 -Ru/TiO₂- and SiO₂-supported catalysts in Fischer-Tropsch synthesis, bimetallic synergy, analysis, 143, 345 Cobaltic-cobaltous oxide support of Au catalysts, low-temperature oxidation of CO over, 144, 175 Coke deactivation of Cr₂O₃/Al₂O₃ catalyst in butene dehydrogenation, 142, 59 deposited on commercial hydrocracking catalysts, effects on catalyst activity and deactivation during piperdine hydrogenolysis, 135, 481; erratum, 141, 321 deposition on Pt-H-ZSM-5 Al₂O₃ catalyst effect on catalyst acidity, intercrystalline mass transfer, and catalytic properties of, 144, 16 effect on composite catalyst and REY zeolite cracking of *n*-hexadecane, **141**, 148 formation in crystalline microporous MAPO-36, **144**, 148 in *n*-propylbenzene disproportionation on zeo-lites, **142**, 664 gas oil-derived deposits in LZ-210 zeolite, carbon K-edge X-ray absorption spectroscopy, 139, 322 profiles, modification in Pt/Al₂O₃- and Pt-Re/Al₂O₃-catalyzed n-heptane reforming, 141, 389 Coking deactivation of catalyst during cumene cracking on REY zeolites, evaluation, 140, 510 Combustion catalytic high-temperature, Pd-supported hexaaluminate catalysts for, analysis, 142, 655 Condensation bimolecular, ethanol to 1-butanol, catalyzation by alkali cation zeolites, 142, 37 Copper ion-exchange properties, in Cu-ZSM-5, adsorption analysis, 142, 708 -Ni catalysts deactivation due to changes in surface composition, 140, 16 and Ni catalysts, SiO₂-supported carbon formation from CH₄ and hydrogen on, kinetics, **139**, 513 -Ru, MgO-supported catalysts formation of bimetallic particle: FTIR study of adsorbed CO CO-O₂ mixtures, **142**, 437 SiO₂-supported catalysts H₂, CO₂, and CO interactions with, analysis by TPD, **144**, 227 in infrared analysis of interactions of CO and CO_2 , 142, 27 K-promoted, CH₄O and methyl formate adsorption, FTIR analysis, **142**, 263 particle size determination by EXAFS based on molecular dynamics, 141, 368 -ZnO, Al₂O₃-supported catalysts, comparison of methanol synthesis from CO/H₂ and CO₂/H₂, 144, 414 -ZSM-5 monolith catalyst, NO reduction by hydrocarbons under lean conditions, steady-state kinetics, 142, 418 ZSM-5-supported catalyst, ion-containing, N₂O photocatalytic decomposition, **141**, 725 Copper aluminate alkadiene hydrogenation selectivity, interaction of vacancies and H species, 144, 544 Copper (I) chlorides catalysis in Si-CH₄O reaction, rate and selectivity, effect of pretreatment condition, 143, 64 Copper chlorides -Si mixtures, pretreatment conditions, effect on rate and selectivity in Si-CH₄O reaction using Cu(I)Cl catalyst, 143, 64 Copper chromite alkadiene hydrogenation selectivity, interaction of vacancies and H species, 144, 544 Coupling reaction methane direct, solid electrolyte-aided, 139, 683 LiYO₂ catalysts in structure and performances, active phases and decay mechanisms, 141, 583 on oxide solid solution catalysts, 143, 533 Cracking catalytic, hydrocarbon mixture over combinations of HY and H-ZSM-5 zeolites, 139, 289 cumene over REY zeolites, associated catalyst deactivation by coking, evaluation, 140, 510 fluid catalytic, hydrocarbon classes over various zeolites, relative reactivity, pseudocomponent test, 140, 41 n-hexane in ZSM-5: in Situ ¹³C cross-polarization magic-angle-spinning NMR and flow reactor/ GC analyses, **144**, 495 hydrocarbons on combinations of HY and H-ZSM-5 zeolites, 140, 150 isobutane and *n*-pentane over CuY zeolites, **141**, 323 labeled hexanes on Pt-WO₃/Al₂O₃ catalysts, **139**, 256 2-methylpentane over HY zeolite, effect of dilution by N₂, 142, 499 N₂, H₂, CO₂, and CO, 144, 377 HY zeolite in presence of chain mechanisms, 142, 465 USHY zeolites, kinetics, 140, 243 n-nonane on USHY zeolites, kinetics, 140, 262 over Pd/Al₂O₃ catalysts, mechanisms, 139, 234 zeolite unit cell size, sulfur content, and coke deposition, 135, 481; erratum, 141, 321 Cracking catalysts faujasite, acidity, activity, and selectivity, effect of exchange cations, 143, 594 Mg-rectorite with Al_2O_3 clusters, effects of, 141, 510 n-hexadecane on REY zeolite and silica-alumina matrix of, selectivity and yield of components, 141, 148 pollucite-containing, preparation and characterization, 143, 304 Crotononitrile skeletal rearrangement from methacrylonitrile over solid-base catalysts, 141, 94 Crystallites CeO₂, size, TPR, 103, 502; erratum, 140, 612 Rh, CO-induced morphological changes, mechanisms, kinetics, and real-space imaging on atomic scale, 144, 525 ZrO₂ growth, effect of water vapor: kinetics and modeling, 139, 329 Crystallization rapid, Fe-silicates synthesized by, iron environments, 139, 482 Crystals Cu₂O single, propene oxidation over, activation at 1 atm and 300 K, analysis, 143, 464 MoO₃, role of different planes in partial oxidation of CH₄ to formaldehyde, **141**, 124 Mo(100) single, catalyzed propylene metathesis, kinetics, 143, 92 ZSM-5 zeolite, active site distribution, analysis by FTIR microscopy, **143**, 388 ## Cumene conversion over metal polyoxocation pillar interlayered clay minerals, related acidity and reactivity, 141, 239 ## cracking over crystalline microporous MAPO-36, 144, 148 REY zeolites, associated catalyst deactivation by coking, evaluation, 140, 510 ### Cuprous oxide propene oxidation over single crystal surfaces, activation at 1 atm and 300 K, analysis, 143, 464 Cyclic feeding effect on benzene hydrogenation reactor, 136, 242; letter to editor, 144, 358; reply, 144, 360 ### Cyclohexane and *n*-hexane, ratio of zeolite sorption, in analysis of shape selectivity, **142**, 303 oxidation in crystalline microporous V-NCL-1 molecular sieve, 143, 275 reactions on Mo₂C catalyst, 143, 249 reforming by γ -Al₂O₃- and zeolite β -supported Pt catalysts, comparison, **140**, 526 selective oxidation over VS-2, 141, 604 Cyclohexanone oxime rearrangement into caprolactum, Al₂O₃ catalysts for, deactivation and regeneration, 142, 172 Cyclohexene hydrogenation, associated synergy between NiMoS and Co₉S₈, 139, 371 ## Cyclopentane H-D exchange on Pt/mordenite catalysts: monoatomic Pt sites, 140, 601 induced agglomeration of Pd particles in Pd/H-ZSM-5 catalysts, 140, 481 reactions on Mo₂C catalyst, 143, 249 # Cyclopropane hydrogenation over Rh/La₂O₃ catalysts, effect of alkali promotion, 140, 453 D ## Deactivation catalysts by coking during cumene cracking on REY zeolites, evaluation, 140, 510 crystalline microporous MAPO-36, 144, 148 Ni catalysts in hydrogenation of acetonitrile, 143, 187 # Dealumination effect on zeolite-supported Ru catalysts, 142, 531 Dec-1-ene oxidation in polymer supported Pd(II) Wacker-type catalysts, 142, 540 ## Decomposition alcohol on Al₂O₃ and Ni/Al₂O₃ catalysts by reverse spillover, 144, 214 autocatalytic, acetate on Rh(110), **142**, 630 ethylene over Fe catalyst, promotional effect of CO, **144**, 93 NO oxygen desorption from Cu-zeolites during, analysis, 143, 520 on Pd/MgO catalysts, active sites and redox properties, 144, 452 N₂O over FeZSM-5 zeolites: role of Fe in zeolite catalytic properties, **139**, 435 photocatalytic, N₂O on Cu/ZSM-5 zeolite catalyst, 141, 725 ## Dehydration alkaline earth metaphosphates as acid catalysts: comparison with crystalline catalysts, 139, 568 ## and coupling to ethers, methanol and 2-methyl-1-propanol, over Nafion H: selectivity, kinetics, and mechanism, 139, 406; erratum, 141, 741 ## Dehydrocyclization over Pd/Al₂O₃ catalysts, mechanisms, 139, 234 ### Dehydrocyclodimerization alkane, gallium in catalysts for, analysis by in situ Ga K-edge X-ray absorption spectroscopy, 140, 209 propane, by Ga₁₃-, Al₁₃-, GaAl₁₂-, Cr-pillar interlayered clay minerals and Ga-H-ZSM-5 zeolite, comparison, **142**, 448 ## Dehydrogenation butene, Cr₂O₃/Al₂O₃ catalyst deactivation by coke during, **142**, 59 ethane in catalytic membrane reactor, analysis, 134, 713; erratum, 140, 613 ## oxidative CH4O catalyzed by ensembles of V, 142, 1 CH₄ with oxides of La, Ce, Sm, and Pr as catalysts, effect of CCl₄, 139, 338 ethylene glycol into glyoxal on SiC-supported Ag catalysts, effect of diethylphosphite, **142**, 729 isobutyric acid, catalytic performance, effects of preparation methods of iron phosphate and P/ Fe compositions, 144, 632 propane by V-Mg-O catalysts, effect of preparation methods, 144, 425 Pt-Au/Al₂O₃ catalysts, 144, 30 related function of Ga-H-ZSM-5 in propane conversion, effect of aging, analysis with pyridine as infrared probe, 139, 679 ## Denitrogenation piperidine on Al₂O₃, SiO₂, and SiO₂-Al₂O₃, effects of surface acidity, **137**, 453; letter to editor, **141**, 316; reply, **141**, 318 ## Desorption amine, in characterization of H,Na-Y zeolites, 144, 193 temperature-programmed, see Temperature-programmed desorption Deuterium exchange catalytic, and hydrogenolysis reactions, 1,2-dimethylhydrazine on transition metals, 144, 325 Deuterium-H exchange cyclopentane on Pt/mordenite catalysts: monoatomic Pt sites, 140, 601 Deuterium-H transfer in analysis of ZSM-5 zeolite effective shape-selective diffusivity, 142, 691 1,1-Diacetate conversion from aldehydes, catalysis by H-ZSM-5 and tungstosilic acid, 141, 308 α-ω-Diamines aliphatic, catalysis by H⁺-pentasils, analysis, 144, 556 Dibenzothiophene CoMo/Al₂O₃-catalyzed deep hydrodesulfurization, effects of solvents, 140, 184 CoMo/Al₂O₃- and Co/Al₂O₃-catalyzed hydrodesulfurization, mechanism, analysis with 35S tracer, 143, 239 Dichlorodifluoromethane conversion under hydrogen over supported Pd catalysts, 141, 21 Diethyldisulfide hydrodenitrogenation reactions due to side reactions with, catalytic tests for, secondary effects, 142, 725 Diethylphosphite effect on SiC-supported Ag catalysts for oxidative dehydrogenation of ethylene glycol into glyoxal, 142, 729 heterogeneities, within porous catalyst support pellets, analysis by NMR imaging, 144, 254 Diffusivity shape-selective, in ZSM-5 zeolites, 142, 691 in zeolites, effects of polarity, cation density, and site occupancy in ZSM-5, 144, 109 10,11-Dihydrocinchonidine modification of Pt catalysts, in enantioselective hydrogenation of ethyl pyruvate, kinetic modeling, 144, 569 Dimethyldisulfide hydrodenitrogenation reactions due to side reactions with, catalytic tests for, secondary effects, 142, 725 1.2-Dimethylhydrazine hydrogenolysis reactions and catalytic deuterium exchange on transition metals, 144, 325 2,4-Dimethylpentane skeletal reactions over Pt/SiO₂ EUROPT-1, comparison with Pt-black catalysts, 141, 648 3,3-Dimethylpentane skeletal reactions over Pt/SiO2 EUROPT-1, comparison with Pt-black catalysts, 141, 648 Diphenyldisulfides sulfide-catalyzed selective reduction, effect of catalyst nature, 144, 160 Dispersion Mo/Al₂O₃ and W/Al₂O₃, effects of F and Mg, 139, 72 Rh/Al₂O₃, effects of high-temperature aging, 144, 296 Disproportionation CHF₂Cl, Cr₂O₃- and Cr₂O₃(C)-catalyzed, mechanism, 140, 103 toluene over La_{1x}Sr_xNiO₃ catalysts, 140, 302 Dissociation and adsorption, methyl halides on SiO2-supported Pd. infrared spectroscopic analysis, 143, 138 DRIFTS, see Fourier-transform infrared spectroscopy, diffuse reflectance E Electrical properties AC, heterogenous catalysts, 140, 464 Electrochemical modification non-Faradaic, catalytic activity, see NEMCA effect Electrolytes solid, SrCe_{0.95}YB_{0.05}O_{3-\alpha}, aided direct coupling of CH₄, 139, 683 Electron microscopy in analysis of fresh and reduced vanadium pentoxide-supported rhodium catalysts, 140, 173 mesopore formation and Al migration on USY catalysts, 140, 395 in situ, in analysis of catalytic reduction of MoS₂ by Fe, Co, and Ni in presence of hydrogen, 141, 171 Electron paramagnetic resonance in analysis of chemical and structural changes during cromia/ titania catalyst genesis, 143, 201 grafted Mo/SiO₂ catalysts, 141, 453 and NMR, in scaling acid strength of Lewis sites, 140, 497 Electron spin resonance in analysis of gas adsorption on ZnO, 140, 585 dynamic, in analysis of O2 chemisorption on TiO2based catalysts, 142, 719 EPR, see Electron paramagnetic resonance ESR, see Electron spin resonance Esterification heteropoly acid-catalyzed in homogeneous liquid phase, effects of central atom of heteropolyanions with W as addenda atom, 143, 437 Ethane dehydrogenation in catalytic membrane reactor, analysis, 134, 713; erratum, 140, 613 -He and CH4-He, reaction with lattice O2 on Li+doped TiO₂ catalyst, 141, 612 hydrogenolysis over Rh/La₂O₃ catalysts, effect of alkali promotion, 140, 453 SiO₂-supported catalysts, 143, 22 Ethene, see Ethylene hydrogenation on SiO₂-supported catalysts, 143, 22 Ethers methanol and 2-methyl-1-propanol coupling to ethers and dehydration over Nafion H: selectivity, kinetics, and mechanism, 139, 406; erratum, 141, 741 Ethyl alcohol bimolecular condensation to 1-butanol, catalyzation by alkali cation zeolites, 142, 37 decomposition on Al₂O₃ and Ni/Al₂O₃ catalysts by reverse spillover, 144, 214 ¹⁸O-labeled, TPD experiments with, in characterization of fluorided Al₂O₃, 140, 84 Ethylbenzene oxidative methylation of C₇H₈ with CH₄ over MgO, 143. I Ethylene catalytic conversion of CH₃Cl over P-modified Mg-ZSM-5 zeolites, 143, 32 and CO/ethylene, adsorption on Pt/Al₂O₃, Pt/MoO₃, and Pt/SiO₂ catalysts, 139, 221 decomposition over Fe catalyst, promotional effect of CO, 144, 93 and H₂, interactions with Rh⁺(CO)₂ and CO adsorbed on RhCl₃/SiO₂ and Rh(NO₃)₃/SiO₂, infrared studies, **139**, 490 hydroformylation over Rh/SiO₂ catalysts, transient infrared study, 140, 281 polymerization with Si₂H₂O-supported catalysts, 141, 524 TPD, in analysis of acid sites on borolites, 144, 285 Ethylene glycol oxidative dehydrogenation into glyoxal on SiC-supported Ag catalysts, effect of diethylphosphite, 142, 729 Ethyl esters one-pot selective synthesis from aromatic nitriles with acid faujasites as catalysts, 139, 362 2-Ethyl-hexenal liquid-phase hydrogenation on Pt/Al, effect of O_2 and Fe, 142, 490 3-Ethylpentane skeletal reactions over Pt/ SiO₂ EUROPT-1, comparison with Pt-black catalysts, 141, 648 Ethyl pyruvate enantioselective hydrogenation, kinetic modeling of PT catalyst modification by cinchona alkaloids, 144, 569 Ethyl 10-undeceonate hydroformylation, onium-SiO₂ catalytic support, 143, 52 EXAFS, see Extended X-ray absorption fine structure spectroscopy Expoxidation lower olefins with H_2O_2 and titanium silicalite, 140, 71 Extended X-ray absorption fine structure spectroscopy in analysis of highly dispersed iron catalyst from Fe₃(CO)₁₂ precipitated on Al₂O₃, 141, 660 Ni and W environment in carbon-supported sulfided W and Ni-W catalysts, 139, 525 simulation-based, molecular dynamics in particle size determination, 141, 368 F Faujasites acid, as catalysts in one-pot selective synthesis of ethyl esters from aromatic nitriles, 139, 362 acid-base catalyst reaction, compensation effect, 142, 97 cracking catalysts, acidity, activity, and selectivity, effect of exchange cations, 143, 594 H-SAPO-37, and HY zeolite, protonic acidity, quantitative study by infrared spectroscopy with benzene as probe, 139, 81 Ru catalysts, characterization and NH₃ synthesis activity, 141, 191 Ferric oxide in Fe-supported Y-zeolite, TPR and sulfiding analysis, 142, 274 Ferrosilicates synthesized by rapid crystallization method, iron environments, 139, 482 Films polysulfone, H₃PMo₁₂O₄₀-blended, catalytic activity in oxidation of ethanol to acetaldehyde, **144**, 348 thin, Pd catalysts, structure, effect of adsorbates and surface reaction, scanning tunneling microscopic analysis, 143, 409 Fischer-Tropsch synthesis Co-catalyzed, products, telomerization model for, 139, 591 Co-Ru catalysts, bimetallic synergy, analysis, 143, 345 on Fe-based catalysts, surface composition, effects of CO activation, 140, 136 hydrogen activation, 140, 121 reaction studies with supported Ru catalysts production of alkenes and high molecular weight hydrocarbons in fixed bed reactor, 143, 166 over Ru/TiO₂, chain initiation, propagation, and termination during, estimates of rate coefficients for, 139, 104 over unreduced iron oxide catalyst, dynamic X-ray diffraction analysis, 139, 375 Flow reactor -GC, in analysis of n-hexane cracking in ZSM-5, 144, 495 Fluoride Al₂O₃-supported catalysts, characterization with ²⁷Al NMR, FTIR, and ethanol-¹⁸O-labeled TPD, **140**, 84 and Mg, effects on dispersion of Mo/Al₂O₃ and W/Al₂O₃, 139, 72 ### Fluorination and chlorination, 1-chloro-1,2,2,2-tetrafluoroethane, kinetics. 142, 289 #### Fluorine in catalysts, analysis with ultrasoft X-ray absorption spectroscopy, 142, 368 mediated acidity of Al₂O₃-pillared fluorohectorite, 139, 664 ## Fluorohectorites Al₂O₃-pillared, fluorine-mediated acidity, 139, 664 Foils Rh, hydrogenation reactivity for CO and CO_2 , effects of VO_X deposits, 139, 602 #### Formaldehyde over MoO₃ catalyst, transient analysis of isotopic labeling under steady-state conditions in, 142, 226 partial oxidation of CH4 to role of different crystal planes of MoO₃, 141, 124 TPR method for catalyst analysis, 143, 299 Fourier transform infrared spectroscopy in analysis of fluorided Al₂O₃, 140, 84 gas adsorption on ZnO, 140, 585 $La_2O_2CO_3$ formation and stability, in oxidative coupling of La_2O_3 , 142, 18 methanol and methyl formate adsorption on K-promoted Cu/SiO₂ catalysts, **142**, 263 nitrosobenzene and nitrobenzene adsorption and surface reactions on oxides, 141, 82 CO/H₂ reactions over Ru/SiO₂ at high pressure and temperature, in situ analysis, 141, 355 CO hydrogenation over CeO₂, 141, 540 CO oxidation over Pt-Rh/Al₂O₃, analysis, **142**, 153 diffuse reflectance, and mass spectrometry, in determination of acetic acid role in Pd-catalyzed vapor-phase synthesis of vinyl acetate, **142**, 312 Mo/Al₂O₃-based catalyst morphology and structure of calcined and sulfided catalysts, 139, 631 SH group presence and role in acidity and activity, 139, 641 quantitative, in catalyst characterization: CO on Rh/ SiO₂, 139, 551 ## Free energy acetophenone reduction over Pd/AlPO₄ catalysts, linear free energy relationship, 140, 335 FTIR, see Fourier transform infrared spectroscopy Fuel cells H-rich, feedstreams, removal of CO by selective catalytic oxidation, **142**, 254 ## G ## Gallium in alkane dehydrocyclodimerization catalysts, analysis by in situ Ga K-edge X-ray absorption spectroscopy, 140, 209 and Ga-Al, pillared montmorillonites, acidity and reactivity for cumene conversion, 141, 239 Ga₁₃- and GaAl₁₂-pillar interlayered clay minerals, and Ga-H-ZSM-5 zeolite, propane dehydrocyclodimerization, comparison, **142**, 448 loaded zeolite H-ZSM-5 supported preparation by GaCl₃ sublimation in H-ZSM-5, characterization, 141, 729 in propane conversion: effect of aging on dehydrogenating and acid functions with pyridine as infrared probe, 139, 679 ## Gallium chloride sublimation in H-ZSM-5, in preparation of Ga catalyst, characterization, 141, 729 #### Gasification carbon, catalyzed, analysis by scanning tunneling and atomic force microscopy, **140**, 543 graphite by CO₂ and H₂O over alkali and alkali earth metal catalyst, analysis, 141, 102 MoS₂ by H₂, analysis by scanning tunneling microscopy and atomic force microscopy, **144**, 77 #### as oils derived coke deposits in LZ-210 zeolite, carbon Kedge X-ray absorption spectroscopy, 139, 322 alkaline earth metaphosphates, acid catalysts: comparison with crystalline catalysts, 139, 568 ### Glyoxal oxidative dehydrogenation of ethylene glycol on SiC-supported Ag catalysts, effect of diethylphosphite, **142**, 729 ### Gold -Pt, Al₂O₃-supported catalysts, preparation, characterization, and dehydrogenation activity, 144, 30 TiO_2 , α -Fe₂O₃, and Co₃O₄-supported catalysts, low-temperature oxidation of CO over, **144**, 175 # Graphite Bi-K intercalation compound, as catalyst for styrene synthesis, 144, 627 gasification by CO₂ and H₂O over alkali and alkali earth metal catalysts, analysis, **141**, 102 support of metal sulfide catalysts, hydrogen interaction: direct observation of spillover, 140, 287 Pd catalysts, dichlorodifluoromethane conversion under hydrogen, 141, 21 ## H ## Hafnium dioxide SO₄-supported catalysts, Lewis site acid strength, scaling by EPR and NMR, 140, 497 ## Halogen substituent effects on catalytic activity of Fe porphyrin complexes for decomposition of *tert*-butyl hydroperoxide, **141**, 311 ## Helium -CH₄ and C₂H₆, reaction with lattice O₂ on Li⁺-doped TiO₂ catalyst, **141**, 612 ### n-Heptane conversion over H-mordenite-supported Pt catalyst, effect of reduction temperature, 144, 1 reforming, on Pt/Al₂O₃ and Pt-Re/Al₂O₃ catalysts, coke and product profile modification, **141**, 389 skeletal reactions over Pt/SiO₂ EUROPT-1, comparison with Pt-black catalysts, **141**, 648 ## Heterogeneity in structure and diffusion within porous catalyst support pellets, analysis by NMR imaging, 144, 254 ## Heterogenous catalysts AC electrical characterization, 140, 464 ## Heteropolyacids catalyzed esterfication in homogeneous liquid phase, and ester reactions, effects of central atom of heteropolyanions with W as addenda atom, 143, 437 H_{3+n}PV_nMO_{12-n}O₄₀, unsupported and heteropolysalt-supported, catalytic behavior in test reaction of CH₃OH oxidation, 139, 455 ## Heteropolysalts K₃PMo₁₂O₄₀, support of H_{3+n}PV₁Mo_{12-n}O₄₀ heteropolyacids in CH₃OH oxidation: heteropolyacid catalytic behavior, **139**, 455 ## Hexaaluminate catalysts Pd-supported, for high-temperature catalytic combustion, analysis, 142, 655 #### n-Hexadecane cracking by composite catalyst and REY zeolite, effect of coke level, 141, 148 ### Hexane aromatization, Pt/KL catalysts for, performance and Pt particle size and location, effect of sulfur, 139, 48 labeled, hydrocracking and isomerization over Pt-WO₃/Al₂O₃ catalysts, 139, 256 # n-Hexane cracking in ZSM-5: in situ ¹³C cross-polarization magic-angle-spinning NMR and flow reactor/ GC analyses, **144**, 495 and cyclohexane, ratio of zeolite sorption, in analysis of shape selectivity, 142, 303 reforming by γ-Al₂O₃- and zeolite β-supported Pt catalysts, comparison, **140**, 526 skeletal reactions over Pd-Co/SiO₂-supported alloys, structure and activity, **143**, 583 ## Hydration metal ions in PdCo/NaY catalysts in CO hydrogenation, effects on metal phases and selectivity, 139, 444 # Hydrocarbons aromatic, methylated, heterogenous catalyzed benzylic acetoxylation on Pd/charcoal catalysts, 140, 311 C₅ and C₆ reactions over Pt/MgO catalyst, metalsupport interaction, **143**, 122 chain growth on Ru catalysts, role of olefin readsorption and H₂/CO reactant ratio, 139, 576 CH₄ conversion over zeolite H-ZSM-5, role of CO and ketene in formation of initial C-C bond, 142, 602 Fischer-Tropsch products, Co-catalyzed, teleomerization model, 139, 591 higher, direct continuous low-power catalytic conversion of CH₄ to, via microwave plasmas, 139, 383 high-molecular-weight, production in fixed bed reactor, Fischer-Tropsch reaction studies with supported Ru catalysts, 143, 166 linear, formation by strong adsorption of CO on CeO₂, **141**, 533 liquid-phase oxidation, catalysis and inhibition by H₂O, **141**, 721 mixture, catalytic cracking on combinations of HY and H-ZSM-5 zeolites, 139, 289 in NO reduction over Cu-ZSM-5 monolith catalyst under lean conditions, steady-state kinetics, 142, 418 reforming rections on Pd/Al₂O₃ catalysts, mechanism, 139, 234 relative reactivity over range of zeolytes under fluid catalytic cracking conditions, pseudocomponent test, 140, 41 ## Hydrodenitrogenation quinoline over high-surface-area Mo₂N, 139, 34 reactions due to side reactions with sulfur compounds, catalytic tests for, secondary effects, 142, 725 ## Hydrodesulfurization CoMo/Al₂O₃-catalyzed, benzothiophene and dibenzothiophene, effects of solvents, 140, 184 CoMo/Al₂O₃ and Co/Al₂O₃-catalyzed, dibenzothiophene, mechanism, analysis with ³⁵S tracer, 143, 239 ## thiophene associated synergy between NiMoS and Co₉S₈, 139, 371 on Mo/Al₂O₃ and Co/Al₂O₃ catalysts, effect of passivation, 144, 579 ## Hydroformylation ethylene over Rh/SiO_2 catalysts, transient infrared study, 140, 281 propylene on Rh/SiO₂ and sulfided Rh/SiO₂, formation of *n*-butyraldehyde and iso-butyraldehyde, infrared analysis, **144**, 131 styrene and ethyl 10-undeceonate, onium-SiO₂ catalytic support, 143, 52 ## Hydrogasification carbon-supported nickel catalyst deactivated by, regeneration, 140, 168 ## Hydrogen activation, effects on surface composition of Febased Fischer-Tropsch catalysts, 140, 121 adsorption on ZnO, ESR, FTIR spectroscopy, and Microwave Hall Effect analysis, 140, 585 annealing in, effect on Raney Ni catalyst, 141, 688 and CH₄, carbon formation from, on Ni/SiO₂ and Ni-Cu/SiO₂ catalysts, kinetics, 139, 513 and C2H4 interactions with Rh+(CO)2 and CO ad- - sorbed on RhCl₃/SiO₂ and Rh(NO₃)₃/SiO₂, infrared studies, 139, 490 - chemisorption on Rh/La₂O₃ catalysts, effect of alkali promotion, **140**, 453 ## and CO - H₂/CO reactant ratio, and olefin readsorption, role in hydrocarbon chain growth on Ru catalysts, **139**, 576 - interactions with bimetallic Ag/Ru(1010) surfaces, 139, 611 - and NH₃, acetonitrile synthesis from, over iron catalysts, 139, 392 - nonequilibrium oxidative conversion of CH₄ to, over Ni/Al₂O₃ at low temperatures: high selectivity and productivity, **139**, 326 - reactions over Ru/SiO₂ at high pressure and temperature, in situ FTIR analysis, 141, 355 - coadsorption, effect on thermal chemistry of methyl iodide on Ni(100) surfaces, 144, 361 - CO₂ and CO/H₂, CH₄ synthesis from, over Cu/ZnO/Al₂O₃ catalyst, comparison, 144, 414 - and CO and CO₂ interaction with Cu/SiO₂, analysis by TPD, **144**, 227 - conversion of dichlorodifluoromethane, over supported Pd catalysts, 141, 21 - -deuterium exchange - in analysis of ZSM-5 zeolite effective shape-selective diffusivity, 142, 691 - cyclopentane on Pt/mordenite catalysts: monoatomic Pt sites, 140, 601 - dilution, effect on 2-methylpentane cracking on HY zeolite, 144, 377 - fuel cell feedstreams, removal of CO by selective catalytic oxidation, 142, 254 - gasification of MoS₂, analysis by scanning tunneling microscopy and atomic force microscopy, **144**, 77 - H_{3+n}PV_nMo_{12-n}O₄₀ heteropolyacids, unsupported and heteropolysalt-supported, catalytic behavior in test reaction of CH₃OH oxidation, **139**, 455 - interaction with - metal sulfide catalysts: direct observation of spillover, 140, 287 - supported Rh catalysts, effect of carrier, **140**, 353 MoS₂ in presence of catalytic reduction by Fe, Co, and Ni, analysis by *in situ* electron microscopy, **141**, 171 - and N₂, interaction with Fe catalysts for NH₃ synthesis, temperature-programmed desorption and reaction analysis, **142**, 135 - -oxygen reaction on Pt, catalyic ignition, analysis, 141, 438 - pressure, effect on propylcyclobutane ring-opening reactions over Pt/SiO₂ catalyst at different temperatures, 143, 111 - pretreatment effect on structure of metal-support interface in Pt/zeolite catalysts, 144, 611 - reduction of oxidized Pt/Fe(100) surfaces, 143, 102 species in Cu-based oxides, behavior, 144, 544 - spillover in Pt/MoO₃ catalysts characterization and kinetics, **139**, 153 kinetic modeling, **139**, 175 - in supported Pt catalysts, TPD, 143, 395 Hydrogenation - acetonitrile, deactivation of nickel catalysts, 143, 187 - alkadiene, interaction of vacancies and H species, selectivity on Cu-based H reservoirs, **144**, 544 benzene - single particle reactor for, cyclic operation, 136, 242; letter to editor, 144, 358; reply, 144, 360 over supported Pt catalysts, 143, 539 - benzene and toluene, over supported Pt catalysts: reaction models for metal surfaces and acidic sites on oxide supports, 143, 563 - 1-butene and 1,3-butadiene mixtures over Pd/ZnO catalysts, 141, 566 - catalytic, highly dispersed Fe, Rh, and Rh/Fe powders in, reactivity, synthesis, and characterization, 139, 504 #### CO - on Al₂O₃-supported Pt, role of spillover, **139**, 421 over CeO₂, in situ FTIR analysis, **141**, 540 - on Co foil and thin Co film model catalysts, 142, 206 - on Pd/NaY catalysts: effect of ion hydration on metal phases and selectivity, 139, 444 - selective catalysis, synthesis, and characterization in Ir carbonyl clusters in NaX zeolite cages, 142, 585 - structural transformation during, effect of NiO morphology, **144**, 50 - and TPR of La₂O₃-promoted Rh/SiO₂ catalysts, 144, 439 - in zeolite-supported Ru catalysts, effect of dealumination, 142, 531 - CO and CO₂, Rh foil reactivity for, effect of VO_{χ} deposits, 139, 602 - cyclohexene, associated synergy between NiMoS and Co₉S₈, 139, 371 - cyclopropane over Rh/La₂O₃ catalysts, effect of alkali promotion, **140**, 453 - ethyl pyruvate, enantioselective, kinetic modeling of Pt catalyst modification by cinchona alkaloids, 144, 569 - liquid-phase, α,β -unsaturated aldehydes, effect of O_2 and Fe, 142, 490 - methyl acetate over Pd-Zn/SiO₂ catalysts, **140**, 406 olefins, with molecular sieving, in montmorillonite-supported Pd hydrogenation catalysts, **141**, 700 - stereoselective, thymol on charcoal-supported platinum catalysts, kinetics, 140, 30 - toluene over supported Pt catalysts, 143, 554 Hydrogenolysis - butane over Pt-Mo/SiO₂ catalysts, kinetics, 144, 118 and catalytic deuterium exchange, 1,2-dimethylhydrazine on transition metals, 144, 325 - C₅ and C₆ hydrocarbons over Pt/MgO catalyst, metal-support interaction, 143, 122 ethane and n-butane on Pt/SiO₂ catalysts, modification by TiO₂ and Al₂O₃, 142, 512 ethane over Rh/La₂O₃ catalysts, effect of alkali promotion, 140, 453 methylcyclopropane over S- and O-modified Mo(111) surfaces, role of subsurface atoms in active site, 139, 93 neopentane over Rh/HY, Rh/NaHY, and Rh/SiO₂ catalysts, effect of protons, 141, 407 zeolite unit cell size, sulfur content, and coke deposition, 135, 481; erratum, 141, 321 Hydrogen peroxide oxidation of alkanes and arenes to alkyl peroxides and phenols, catalysis by vanadate-pyrazine-2carboxylic acid, 142, 147 and titanium silicalite, expoxidation of lower olefins with, 140, 71 Hydrosulfurization thiophene catalytic activity of WO₃/USY zeolite, characterization, 141, 206 Hydrotreating catalysts deactivated by formation of SiO₂ gels from polydimethylsiloxane, characterization, 143, 45 I Infrared spectroscopy adsorbed CO on Pt/-zeolite catalysts, 141, 465 in analysis of Fe-Y zeolites for selective catalytic reduction of NO by NH₃, **142**, 572 integrated molar extinction coefficients for pyridine absorbed on solid acid catalysts, 141, 347 model γ-Al₂O₃-supported Re-Pt catalyst prepared from [Re₂Pt(CO)₁₂], 140, 190 Rh-Mo interaction in Rh-Mo-Al₂O₃, 141, 478 interactions of C₂H₄ and H₂ with Rh⁺(CO)₂ and CO adsorbed on RhCl₃/SiO₂ and Rh(NO₃)₃/SiO₂, **139**, 490 CO and CO₂ with Cu/SiO₂, **142**, 27 nitrosobenzene and nitrobenzene adsorption and surface reactions, 141, 82 with pyridine as probe, in analysis of effect of aging on dehydrogenating and acid functions of Ga-H-ZSM-5 propane conversion, 139, 679 in quantitation of protonic acidity of H-SAPO-37 and HY with benzene as probe, 139, 81 in situ, and steady-state isotopic transient kinetic analysis, methanation and ethylene hydroformylation over Rh/SiO₂ catalysts, 140, 281 supported metal catalysts, improved sample system for, 139, 691 Ion exchange Cu in ZSM-5 zeolites, adsorption analysis, 142, 708 lons charge-compensating in L zeolite, effect on neopentane conversion by Pd, 141, 337 Iridium carbonyl clusters in NaX zeolite cages: synthesis, characterization, and selective catalysis of CO hydrogenation, 142, 585 CO₂ reforming of CH₄ over, 144, 38 Iron based Fischer-Tropsch catalysts, surface composition, effects of CO activation, 140, 136 hydrogen activation, 140, 121 catalysts decomposition of ethylene over, promotional effect of CO, 144, 93 interaction with H₂ and N₂ for NH₃ synthesis, TPD and reaction analysis, **142**, 135 in catalytic reduction of MoS₂ in presence of hydrogen, analysis by *in situ* electron microscopy, **141**, 171 and Co molybdates mixed, synergistic effects with Bi molybdates in mild oxidation of propene, 142, 381 multiphasic, valence states and solubility limits in mixed, molybdate-based catalysts, electrical conductivity analysis, **142**, 373 environments in Fe-silicates synthesized by rapid crystallization method, 139, 482 highly dispersed catalyst from Fe₃(CO)₁₂ precipitated on Al₂O₃, preparation and EXAFS analysis, **141**, 660 and O_2 , effect in liquid-phase hydrogenation of α,β unsaturated aldehydes, **142**, 490 reduced or prenitrided catalysts, acetonitrile synthesis from CO, H₂, and NH₃ over, 139, 392 and Rh and Rh/Fe powders, highly dispersed, synthesis, characterization, and catalytic hydrogenation activity, 139, 504 role in catalytic properties of ZSM-5 zeolites in N₂O decomposition, 139, 435 Y zeolites, selective catalytic reduction of NO by NH₃, kinetic and infrared spectroscopic analysis, 142, 572 Iron(100) oxidized surface, reduction by H₂, 143, 102 Iron oxide catalysts in Fischer-Tropsch synthesis, analysis by dynamic X-ray diffraction, 139, 375 nanophase agglomeration and phase transition, 143, 510 structure, XAFS and XANES analyses, 143, 499 size distribution, determination by superparamagnetic Mössbauer relaxation spectra, 142, 552 -V₂O₅, alumina-based, interactions under hightemperature calcination and SO₂ oxidation conditions, 139, 1 catalytic properties, effect of calcination-induced surface enrichment of impurities, 141, 161 α -Iron oxide support of Au catalysts, low-temperature oxidation of CO over, 144, 175 Iron phosphate and P/Fe compositions, preparation methods, effects on catalytic performance in oxidative dehydrogenation of isobutyric acid, 144, 632 Iron porphyrin complexes for decomposition of *tert*-butyl hydroperoxide, catalytic activity, halogen substituent effects, **141**, 311 Iron sulfide graphite-supported catalysts: interaction with hydrogen: direct observation of spillover, 140, 287 Isobutane acid catalysis over CuY zeolites, 141, 323 Isobutyl alcohol and methanol, coupling to ethers and dehydration over Nafion H: selectivity, kinetics, and mechanism, 139, 406; erratum, 141, 741 Isobutyric acid oxidative dehydrogenation, catalytic performance of iron phosphate and P/Fe compositions in, effects of preparation methods, 144, 632 Isomerization hydrocarbons on combinations of HY and H-ZSM-5 zeolites, 140, 150 labeled hexanes on Pt-WO₃/Al₂O₃ catalysts, 139, 256 and metathesis, 1-butene over unreduced Mo/Al₂O₃ catalysts, analysis, 142, 110 over Pd/Al₂O₃ catalysts, mechanisms, **139**, 234 skeletal, nitriles over solid-base catalysts, **141**, 94 xylenes on H-ZSM-5 compound kinetics and selectivity, **141**, 548 under steady-state and non-steady-state conditions, **139**, 24 Isoprene hydrogenation selectivity on Cu-based H reservoirs, 144, 544 Isopropylamine temperature-programmed desorption, in analysis of Cu-ZSM-5 zeolites: characterization of ion-exchange Cu properties, 142, 708 Isotope labeling 35S, in analysis of hydrodesulfurization of dibenzothiophene with Co-Mo/Al₂O₃ and Co/Al₂O₃ catalysts, 143, 239 Isotopic labeling transient analysis under steady-state conditions in partial oxidation of CH₄ to formaldehyde over MoO₃ catalysts, 142, 226 K ## Ketenes and CO, in formation of initial C-C bond in CH₄ conversion to hydrocarbons over zeolite H-ZSM-5, 142, 602 ## Kinetics in analysis of acetic acid role in Pd-catalyzed vapor-phase synthesis of vinyl acetate, 142, 312 compensation effect in acid-base catalyzed reactions on zeolites, 142, 97 Fe-Y zeolites for selective catalytic reduction of NO by NH₃, **142**, 572 butane hydrogenolysis over Pt-Mo/SiO₂ catalysts, 144, 118 calcination effect on H₂ spillover in Pt/MoO₃ catalysts modeling, 139, 175 recording with isothermal and TPR experiments, 139, 153 carbon formation from CH₄ and H₂ on Ni/SiO₂ and Ni-Cu/SiO₂ catalysts, 139, 513 1-chloro-1,2,2,2-tetrafluoroethane fluorination and chlorination, 142, 289 CH₄ oxidative coupling over Li-doped TiO₂ catalysts, **140**, 1 2-methylpentane cracking on USHY zeolites, 140, 243 modeling and TPD, in analysis of N molecular formation from atoms on Rh(111) catalysts, 144, 273 Mo(100) single crystal-catalyzed propylene metathesis, 143, 92 *n*-nonane cracking on USHY zeolites, **140**, 262 rate of ZrO₂ crystallite growth, **139**, 329 steady-state isotopic transient and in situ infrared spectroscopic analysis, methanation and ethylene hydroformylation over Rh/SiO₂ catalysts, 140, 281 NO reduction by hydrocarbons over Cu-ZSM-5 monolith catalyst under lean conditions, 142, 418 stereoselective thymol hydrogenation on charcoalsupported platinum catalysts, 140, 30 L ## Lanthanides Ln₂Ti₂O₇ and Ln₂Zr₂O₇, CH₄ oxidative coupling over, effects of bond energy, 140, 328 Lanthanum La_{1x}Sr_xNiO₃ catalysts, toluene rearrangement and disproportionation, **140**, 302 Lanthanum dioxymonocarbonate formation and stability in oxidative coupling of CH₄ on La₂O₃, infrared analysis, 142, 18 Lanthanum oxide and oxides of Ce, Sm, and Pr, as catalysts for oxidative dehydrogenation of CH₄, comparison: effect of CCl₄, 139, 338 promotion of Rh/SiO₂ catalysts, TPR and CO hydrogenation, 144, 439 Lanthanum oxide carbonate formation and stability during CH₄ oxidative coupling over La₂O₃, infrared analysis, **142**, 18 ### Lanthanum trioxide support of Rh catalysts, alkali promotion, XPS and reaction studies, 140, 453 #### Lead Ba perovskites, catalytic partial oxidation of CH₄ over, 139, 652 ### Lithium doped TiO2 catalysts CH4 oxidative coupling over kinetics, 140, 1 role of lattice oxygen, 144, 352 lattice O_2 , in transient kinetic study of CH_4 and C_2H_6 , 141, 612 LiYO₂ methane coupling catalysts, active phases and decay mechanisms, 141, 583 Mg-Li oxide catalysts for CH₄ oxidative coupling, analysis by TPIE, 142, 697 MgO-supported catalysts, oxidative coupling of CH₄ over at low temperature, effect of steam, 141, 713 with N₂O as oxidant, 142, 325 promoted MgO catalysts, CH₄ oxidative coupling, active site analysis, 140, 344 #### Loading effect on metal surface area for Ag/α - Al_2O_3 catalysts, 139, 41 ### M ## Magic-angle spinning in situ solid-state NMR, shallow-bed CAVERN design for analysis of catalytic reactions, 141, 733 Magnesium and Ca and Ba, metaphosphate glasses, as acid catalysts, comparison with crystalline catalysts, 139, 568 and F, effects on dispersion of Mo/Al₂O₃ and W/Al₂O₃, 139, 72 Li oxide catalysts for CH₄ oxidative coupling, analysis by TPIE, 142, 697 in MAPO-36 molecular sieve, crystallinity characterization, 143, 227 -rectorite pillared with Al₂O₃ clusters, effect of V, 141, 510 -ZSM-5 zeolites, P-modified, in catalysis of CH₃Cl to C₂H₄ and C₃H₆, 143, 32 ## Magnesium oxide C₇H₈ and CH₄ oxidative methylation to styrene and ethylbenzene over, 143, 1 -Mg₃(VO₄)₂, and Mg₂V₂O₇ and (VO)₂P₂O₇, catalysis of alkanes, selectivity patterns, **140**, 226 pure and Li-promoted catalysts, oxidative coupling of CH₄, active site analysis, 140, 344 superbasic catalysts with bialkali metal compounds, effects on oxidative coupling of CH₄, 141, 628 support of Ba cataysts, oxidative coupling of CH₄, 143, 286 CrO₃, surface chemistry analysis by Raman spectroscopy, 142, 166 Cu-Ru catalysts, formation of bimetallic particle in, spectroscopic evidence: CO adsorption and CO-O₂ interaction, **142**, 437 Li⁺, oxidative coupling of CH₄ over, with N₂O as oxidant, 142, 325 Li catalysts, oxidative coupling of CH₄ at low temperature, effect of steam, 141, 713 Ni catalysts, surface properties and reactivity in CH₄ steam reforming, 141, 34 ## Pt catalysts for hydrogenolysis reactions of C₅ and C₆ hydrocarbons, metal-support interaction, **143**, 122 Re₂O₇ catalysts, analysis by Raman spectroscopy, 141, 419 Rh catalysts, oxidation state, CO-induced changes, XPS study, 140, 564 V catalysts preparation methods, effects on oxidative dehydrogenation of propane, 144, 425 support of, Pd catalysts in NO direct decomposition, active sites and redox properties, 144, 452 -V₂O₅-MoO₃ system, butane oxidation and phase -V₂O₅-MoO₃ system, butane oxidation a equilibria studies, 144, 597 ## Magnesium pyrovanadate and Mg₃(VO₄)₂-MgO and (VO)₂P₂O₇, catalysis of alkanes, selectivity patterns, 140, 226 # Magnesium vanadate -MgO, and Mg₂V₂O₇ and (VO)₂P₂O₇, catalysis of alkanes, selectivity patterns, 140, 226 ## Magnetic resonance spectroscopy ¹³³Cs, in characterization of fluid cracking catalysts with pollucite, 143, 304 ## Maleic anhydride butane selective oxidation on VPO catalyst, effects of Zr, 143, 215 ## Manganese based catalysts, in oxidative carbonylation of aniline, 143, 631 ## α -Manganese oxide benzoyl compounds on, surface chemistry, FTIR analysis, 143, 573 nitrosobenzene and nitrobenzene adsorption and surface reactions, infrared spectroscopic analysis, 141, 82 # Mass spectrometry secondary ion, see Secondary ion mass spectrometry ## Membrane reactors catalytic, ethane dehydrogenation in, analysis, 134, 713; erratum, 140, 613 ## Mesopores formation in USY catalysts, electron microscopic analysis, 140, 395 ## Metals alkali, see Alkali metals supported catalysts, infrared study, improved sample system for, 139, 691 ## Metal sulfides catalysts, interaction with hydrogen, direct observation of spillover, 140, 287 ## Metal-support interactions C₅ and C₆ hydrocarbon hydrogenolysis reactions over Pt/MgO catalyst, **143**, 122 in Pt/TiO₂ catalyst, effect of preparation mode, 143, 155 ## Metaphosphates alkaline earth, glasses, as acid catalysts: comparison with crystalline catalysts, 139, 568 #### Metathesis and isomerization, 1-butene over unreduced Mo/ Al₂O₃ catalysts, analysis, 142, 110 propene by Mo/Al₂O₃ catalysts prepared via metal complex precursors, 139, 134 Re₂O₇-γ-Al₂O₃ catalysts, effect of calcination temperature, **144**, 472 propylene, Mo(100) single crystal-catalyzed, kinetics, 143, 92 ## Methacrylonitrile unsaturated, skeletal rearrangement over solid-base catalysts, 141, 94 ### Methanation CO and CO₂ over Rh/Al₂O₃ catalyst with pulsedflow microreactors, 143, 308 over Rh/SiO₂ catalysts, transient infrared study, 140, 281 unsteady-state, CO on Ni/SiO₂ catalyst, 139, 62 Methane activation and reaction with CO₂ over supported Rh catalysts, 141, 287 catalytic partial oxidation over Ba-Pb, Ba-Bi, and Ba-Sn perovskites, 139, 652 and C₇H₈, oxidative methylation over MgO to styrene and ethylbenzene, 143, 1 CO₂ reforming over transition metals, **144**, 38 coupling reaction direct, solid electrolyte-aided, 139, 683 LiYO₂ catalysts in structure and performances, active phases and decay mechanisms, **141**, 583 on oxide solid solution catalysts, **143**, 533 direct continuous low-power catalytic conversion to higher hydrocarbons via microwave plasmas, 139, 383 -He and C₂H₆-He, reaction with lattice O₂ on Li⁺-doped TiO₂ catalyst, **141**, 612 and hydrogen, carbon formation from, on Ni/SiO₂ and Ni-Cu/Si₂ catalysts, kinetics, **139**, 513 nonequilibrium oxidative conversion to CO and H₂ over Ni/Al₂O₃ at low temperatures: high selectivity and productivity, **139**, 326 ## oxidation over oxide solid solution catalysts, properties, **140**, 557 Pd on Zr prepared from amorphous Pd₁Zr₃ alloy, **141**, 494 Pt deposited on Y₂O₃-doped ZrO₂, NEMCA effect, **140**, 53 ZrO₂, selectivity, effect of zirconia preparation, **141**, 279 oxidative coupling over Ag catalyst-electrodes deposited on ZrO₂, 144, alkali metal compound-promoted ZrO₂ catalysts, 139, 304 La₂O₃, infrared analysis of La₂O₂CO₃ formation and stability, **142**, 18 Li-doped TiO₂ catalysts, kinetics, 140, 1 Li⁺/MgO catalyst with N₂O as oxidant, **142**, 325 Mg-Li and Ca-Ni-K oxide catalysts, TPIE analysis, **142**, 697 Mg-Li oxide catalysts at low temperature, effect of steam, 141, 713 oxide-supported Ba catalysts, 143, 286 pyrochlore structures, effects of bond energy, 140, 328 SiO₂-supported binary alkali and alkaline earths, cation effects, **142**, 45 superbasic MgO catalysts, 141, 628 oxidative dehydrogenation with oxides of La, Ce, Sm, and Pr as catalysts, comparison, effect of CCl₄, 139, 338 ## partial oxidation over MoO₂/SiO₂ catalysts, effect of Mo content and type of oxidant, **142**, 406 Si and Si-supported oxide catalysts, evaluation, 143, 262 partial oxidation to formaldehyde over MoO₃ catalysts, transient isotopic labeling analysis under steady-state conditions, **142**, 226 role of different crystal planes of MoO₃, 141, 124 TPR method for catalyst analysis, 143, 299 selective reduction of NO over Co-exchanged ZSM-5, effect of water vapor, 142, 561 surface properties and reactivity in steam reforming in Ni/MgO catalysts, 141, 34 ## Methanol conversion to hydrocarbons over zeolite H-ZSM-5, role of CO and ketene in formation of initial C-C bond, 142, 602 decomposition on Al₂O₃ and Ni/Al₂O₃ catalysts by reverse spillover, 144, 214 dehydration, acidity and catalytic activity of AlPO₄-5, AlPO₄-14, MeAPSO-44, and SAPO-44 molecular sieves in, **139**, 351 and methyl formate, adsorption on K-promoted Cu/SiO₂ catalysts, FTIR analysis, **142**, 263 and 2-methyl-1-propanol, coupling to ethers and dehydration over Nafion H: selectivity, kinetics, and mechanism, 139, 406; erratum, 141, 741 oxidation over Mo/SiO₂ catalysts, 141, 430 unsupported and heteropolysalt-supported $H_{3+n}PV_nMo_{12-n}O_{40}$ heteropolyacids, 139, 455 oxidative dehydrogenation on SiO₂-supported vanadium, 142, I rate and selectivity in reaction of Si-CH4O with Cu(I)Cl catalyst, effect of pretreatment condition, 143, 64 synthesis from CO₂/H₂ and CO/H₂, over Cu/ZnO/ Al₂O₃ catalyst, comparison, 144, 414 Methyl acetate hydrogenation over Pd-Zn/SiO₂ catalysts, 140, 406 n-Methylaniline rearrangement, over H-ZSM-5, H-Theta-1, and H-Y zeolites, 143, 627 Methylation C7H8 on zeolite H-ZSM-5, 141, 548 oxidative, C₇H₈ with CH₄ over MgO, to styrene and ethylbenzene, 143, 1 Methyl chloride adsorption and dissociation on SiO2-supported Pd, infrared spectroscopic analysis, 143, 138 catalytic conversion to C2H4 and C3H6 over P-modified Mg-ZSM-5 zeolites, 143, 32 Methylcyclopentane in analysis of Pd-mordenite catalysts, 143, 314 reactions on Mo₂C catalyst, 143, 249 reforming by γ-Al₂O₃- and zeolite β-supported Pt catalysts, comparison, 140, 526 skeletal reactions over Pd-Co/SiO2-supported alloys, structure and activity, 143, 583 Methylcyclopropane hydrogenolysis over S- and O-modified Mo(111) surfaces, role of subsurface atoms in active site, **139**, 93 3-Methylhexane skeletal reactions over Pt/SiO₂ EUROPT-1, comparison with Pt-black catalysts, 141, 648 Methyl iodide adsorption and dissociation on SiO2-supported Pd, infrared spectroscopic analysis, 143, 138 thermal chemistry, effect of H coadsorption on Ni(100) surfaces, 144, 361 2-Methylpentane cracking on HY zeolite effect of dilution by N2, 142, 499 effect of dilution by N2, H2, CO2, and CO, 144, 377 in presence of chain mechanisms, 142, 465 cracking on USHY zeolites kinetics, 140, 243 and 3-methylpentane, reactions on Mo₂C catalyst, 143, 249 3-Methylpentane and 2-methylpentane, reactions on Mo₂C catalyst, 143, 249 Methylphenylketone surface chemistry on oxides, FTIR analysis, 143, 2-Methyl-1-propanol, see Isobutyl alcohol 1-Methyoxy-2-propanol liquid-phase oxidation by promoted Pt catalysts of designed geometry, 142, 237 Microcalorimetry adsorption and reaction of CO, O2, CO2+O2, and CO2 on NaX zeolite, Pt/NaX, and Pt metal, effect of oxidizing and reducing pretreatment, microcalorimetric study, 140, 443 Microgravimetric techniques in analysis of oxygen adsorption on Ag/α - Al_2O_3 , 143, 481 Microreactors pulsed-flow, Rh/Al₂O₃ catalyst with, methanation of CO and CO₂, 143, 308 Microscopy, see specific techniques Microstructure Rh and Rh/Ce on SiO₂ and Al₂, in NO + CO, 140, 424 Microwave Hall effect in measurement of gas adsorption on ZnO, 140, 585 Microwaves generated plasmas, in direct continuous low-power catalytic conversion of CH4 to higher hydrocarbons, 139, 383 Mixtures mechanical, MoO₃-Al₂O₃, surface species formation, analysis, 141, 48 Molecular dynamics simulations, based EXAFS, in particle size determination, 141, 368 Molecular sieves AlPO₄-5, AlPO₄-14, MeAPSO-44, and SAPO-44, acidity and catalytic activity in methanol dehydration, 139, 351 MAPO-36 crystalline microporous catalytic properties and deactivation, 144, 148 synthesis and characterization, 143, 227 in montmorillonite-supported Pd hydrogenation catalysts, properties, 141, 700 SAPO-34, thermal stability, multinuclear NMR analysis, 143, 430 V-NCL-1, large-pore V silicate, characterization, 143, 275 VPI-5, catalytic activity, isomorphic substitution and generation, 141, 140 Molybdates based catalysts multiphasic Bi molybdates and mixed Fe and Co molybdates in mild oxidation of propene, synergistic effect, 142, 381 valence states and solubility limits in mixed Fe and Co molybdates, electrical conductivity analysis, 142, 373 Molybdena, see Molybdenum trioxide Molybdenum Al₂O₃-supported catalysts analysis by FTIR morphology and structure of calcined and sulfided catalysts, 139, 631 analysis by FTIR SH group presence and role in acidity and activity, 139, 641 analysis of CO₂ chemisorption, 144, 636 in chemisorption of CO₂, 139, 688 prepared via metal complex precursors sorption of metal complexes by support surface, 139, 142 synthesis and activity in propene metathesis, 139, 134 thiophene hydrodesulferization, effect of passivation, **144**, 579 unreduced system, analysis, 142, 110 -Co, Al₂O₃-supported catalysts and Co/Al₂O₃ catalysts, sulfidation, analysis by Mössbauer emission spectroscopy, **143**, 601 in deep hydrodesulfurization of benzothiophene and dibenzothiophene, effects of solvents, 140, 184 content, and type of oxidant, effect on partial oxidation of CH₄ on MoO₃/SiO₂ catalysts, **142**, 406 H_{3+n}PV_nMo_{12-n}O₄₀ heteropolyacids, unsupported and heteropolysalt-supported, catalytic behavior in test reaction of CH₃OH oxidation, **139**, 455 Mo(100), single crystal-catalyzed propylene metathesis, kinetics, 143, 92 Mo(111) surfaces, S- and O-modified, methylcyclopropane hydrogenolysis over, role of subsurface atoms in active site, 139, 93 Mo₂N, dehydrogenation of butylamine, and ammonolysis of butylalcohol, in synthesis of butyronitrile, **142**, 430 -Ni, Al₂O₃-supported catalysts, reducibility: TPR study, 139, 540 NiMoS, and Co₉S₈, synergy in hydrogenation of cyclohexene and hydrodesulfurization of thiophene, **139**, 371 -Pt, SiO₂-supported catalysts, butane hydrogenolysis over, kinetics, **144**, 118 redox site proximity and oxidation of butene, 142, -Rh interaction in Rh/Mo/Al₂O₃, 141, 478 SiO₂-supported catalysts CH₄O oxidation over, 141, 430 grafted, characterization and modeling after redox thermal treatments, 141, 453 and W, Al₂O₃-supported catalysts, dispersion, effects of F and Mg, 139, 72 Molybdenum carbide catalyst for isomerization of 2- and 3-methylpentane and hydrogenolysis of cyclopentane, cyclohexane, and methycyclopentane, 143, 249 Molybdenum catalysts -Pt/SiO₂ catalysts, butane hydrogenolysis over, kinetics, 144, 118 Molybdenum disulfide $$\begin{split} \gamma\text{-}Al_2O_3\text{-}supported hydroprocessing catalysts \\ prepared by precipitation from homogenous solution method, characterization and analysis, \textbf{142}, \\ 121 \end{split}$$ catalytic reduction by Fe, Co, and Ni in presence of hydrogen, analysis by *in situ* electron microscopy, **141**, 171 gasification by H₂, analysis by scanning tunneling microscopy and atomic force microscopy, **144**, 77 graphite-supported catalysts, interaction with hydrogen: direct observation of spillover, 140, 287 support of K catalysts, alkali promoter in, structure, distribution, and effects on alcohol synthesis from syngas, 142, 672 Molybdenum nitride high-surface-area, quinoline hydrodenitrogenation over, 139, 34 Molybdenum oxide catalysts partial oxidation of CH₄ to formaldehyde over, transient isotopic labeling analysis under steadystate conditions, **142**, 226 Molybdenum trioxide -Al₂O₃-supported catalysts, mechanical mixtures, surface species formation, 141, 48 different crystal planes, role in partial oxidation of CH₄ to formaldehyde, **141**, 124 -MgO-V₂O₅ system, butane oxidation and phase equilibria studies, 144, 597 SiO₂-supported catalysts, in partial oxidation of CH₄ basic approach in evaluation, 143, 262 effect of Mo content and type of oxidant, 142, 406 support of Pt catalysts catalyst preparation and physical characterization, 139, 191 CO and O₂ adsorption, 139, 207 H₂ spillover characterization and kinetics, 139, 153, 175 hydrocarbon adsorption, 139, 221 12-Molybdophosphoric acid, see 12-Phosphomolybdic acid Molybdovanaphosphoric acid reactivity, effect of V in primary and secondary structure, 143, 325 Monte Carlo simulations in analysis of two-component catalysts for low-temperature CO oxidation, 141, 219 bimolecular catalytic reaction, trigger mechanism of self-oscillation, and effect of molecule self-organization, 142, 198 Montmorillonite Ga₁₃-, Al₁₃-, GaAl₁₂-, and Cr-pillared, and Ga-H-ZSM-5 zeolite, propane dehydrocyclodimerization, comparison, 142, 448 metal pillar interlayed clay minerals, acidity and reactivity for cumene conversion, 141, 239 pillared, characterization with atomic force microscope, **142**, 337 support of Pd hydrogenation catalysts with molecular sieve properties, preparation and characterization, 141, 700 Mordenites H, support of Pt catalysts, *n*-heptane conversion over, effect of reduction temperature, **144**, 1 -Pd catalysts, precursor, in formation of Pd aquocomplexes, 143, 314 pyridine absorbed on, infrared absorption bands, integrated molar extinction coefficients, **141**, 347 support of Pt catalysts, H-D exhange of cyclopen- tane: monoatomic sites, 140, 601 Mössbauer spectroscopy Pt-Sn reforming catalysts, analysis, 142, 641 superparamagnetic relaxation spectra, in determination of particle-size distribution of Fe₂O₃ catalysts, **142**, 552 #### N #### Nation H methanol and 2-methyl-1-propanol coupling to ethers and dehydration over: selectivity, kinetics, and mechanism, 139, 406; erratum, 141, 741 Napthalene oxidation in crystalline microporous V-NCL-1 molecular sieve, 143, 275 **NEMCA** effect promotion of CH₄ oxidation over Pt deposited on Y₂O₃-doped ZrO₂, **140**, 53 Neopentane conversion on Pd-Co/SiO₂-supported catalysts, alloy homogeneity, surface composition, and activity, **142**, 617 Pd/zeolite-L-supported catalysts, effects of protons, ions, and zeolite structure, 141, 337 hydrogenolysis over Rh/HY, Rh/NaHY, and Rh/SiO₂, effect of protons, **141**, 407 ## Nickel Al₂O₃-supported, in low-temperature nonequilibrium oxidative conversion of CH₄ to H₂ and CO: high selectivity and productivity, **139**, 326 Ca-Ni-K, oxide catalysts for CH₄ oxidative coupling, analysis by TPIE, **142**, 697 carbon-supported catalyst, regeneration, 140, 168 as catalyst in direct continuous low-power conversion CH₄ to higher hydrocarbons via microwave plasmas, 139, 383 in catalytic reduction of MoS₂ in presence of hydrogen, analysis by *in situ* electron microscopy, 141, 171 -copper catalysts, deactivation due to changes in surface composition, 140, 16 CO₂ reforming of CH₄ over, 144, 38 La_{1x}Sr_xNiO₃ catalysts, toluene rearrangement and disproportionation, 140, 302 MgO-supported catalysts surface properties and reactivity in CH₄ steam reforming, 141, 34 -Mo Al₂O₃-supported catalysts, reducibility: TPR study, 139, 540 Ni(100), methyl iodide on, thermal chemistry, effect of H coadsorption, 144, 361 and Ni-Cu, SiO₂-supported catalysts, carbon formation from CH₄ and H₂ on, kinetics, 139, 513 NiMoS, and Co₂S₈, synergy in hydrogenation of cyclohexene and hydrodesulfurization of thiophene, **139**, 371 Ni_xRu_{1-x}, Al₂O₃-supported, characterization and catalytic properties, **142**, 455 -Pd, SiO₂-supported catalysts, preparation by coexchange and organometallic chemistry, characterization, 144, 460 SiO₂-supported catalysts deactivation in hydrogenation of acetonitrile, 143, 187 reversible enhancement by pretreatment temperature, 143, 22 unsteady-state CO methanation on, 139, 62 -W, and W, carbon-supported sulfided catalysts, Ni and W environment in, analysis by EXAFS, 139, 525 ## Nickel monoxide pure and K-doped reduced forms, structural and catalytic properties, 142, 392 #### Nickel oxide morphology, effect on structural transformation mechanisms in CO hydrogenation, 144, 50 Niobium pentoxide support of CrO₃, surface chemistry analysis by Raman spectroscopy, **142**, 166 Nitric oxide adsorption, and NO-CO interaction, on Ru/ZnO catalyst, 141, 486 decomposition oxygen desorption from Cu-zeolites during, analysis, 143, 520 Pd/MgO catalysis, active sites and redox properties, 144, 452 gas phase, effect in enhanced CO desorption from Pd/Al₂O₃ catalysts, analysis by radioactive tracer technique, 143, 381 oxidation of CO over Rh(111) catalyst, 144, 9 reduction by hydrocarbons over Cu-ZSM-5 monolith catalyst under lean conditions, steady-state kinetics, 142, 418 selective catalytic reduction by CH₄ over Co-exchanged ZSM-5, effect of water vapor, 142, 561 by NH₃ on Fe-Y zeolites, kinetic and infrared spectroscopic analysis, 142, 572 on SO₄⁻²/TiO₂ superacid catalyst, **139**, 277 over V catalysts, role of NH₃ oxidation, 142, 182 sintering of γ -Al₂O₃-supported Pt catalysts, observation by CO TPD and TEM, **144**, 60 Nitriles aromatic, one-pot selective synthesis of ethyl esters from, with acid faujasites as catalysts, 139, 362 Nitrobenzene adsorption and surface reactions on oxides, infrared spectroscopic analysis, 141, 82 Nitrogen dilution effect on 2-methylpentane cracking on HY zeolite, 144, 377; 142, 499 and H₂, interaction with Fe catalysts for NH₃ synthesis, TPD and reaction analysis, 142, 135 molecular formation from atoms on Rh(111) catalysts, reaction rates, 144, 273 Mo₂N, dehydrogenation of butylamine and ammonolysis of butylalcohol over, synthesis of butyronitrile, **142**, 430 Nitrosobenzene adsorption and surface reactions on oxides, infrared spectroscopic analysis, 141, 82 Nitrous oxide decomposition over FeZSM-5: zeolite catalytic properties, 139, 435 in MoO₃/SiO₂ catalysts, effect on partial oxidation of CH₄, 142, 406 as oxidant in oxidative coupling of CH₄ over Li^{-/} MgO catalyst, **142**, 325 oxidation of CO over Rh(111) catalyst, **144**, 9 photocatalytic decomposition on Cu/ZSM-5 zeolite catalyst, **141**, 725 NMR, see Nuclear magnetic resonance n-Nonane cracking on USHY zeolites, kinetics, 140, 262 Nuclear magnetic resonance ²⁷Al, in characterization of fluorided Al₂O₃, **140**, 84 in analysis of heterogeneities in structure and diffusion within porous catalyst support pellets, **144**, 254 ¹³C cross-polarization magic-angle-spinning in situ, in analysis of n-hexane cracking in ZSM-5, 144, 495 multinuclear, in analysis of SAPO-34 thermal stability, 143, 430 ³¹P, and EPR, in scaling acid strength of Lewis sites, 140, 497 ²⁹Si in analysis of isomorphous substitution and generation of catalytic activity in VPI-5, 141, 140 and ¹³C cross-polarization magic-angle spinning, in characterization of spent hydrotreating catalysts, 143 45 solid-state, with shallow-bed CAVERN apparatus, for studies of catalytic reactions in situ, 141, 733 0 n-Octane cracking and isomerization on combinations of HY and H-ZSM-5 zeolites, 140, 150 oxidation in crystalline microporous V-NCL-1 molecular sieve. 143, 275 Olefins combustion on Ag, rate-limiting step, analysis, 141, 300 hydrogenation, with molecular sieving, in montmorillonite-supported Pd hydrogenation catalysts, 141, 700 lower, expoxidation with H₂O₂ and titanium silicalite, 140, 71 readsorption, and H₂/CO reactant ratio, role in hydrocarbon chain growth on Ru catalysts, 139, 576 Organometallic chemistry and coexchange, in preparation of Pd-Ni catalysts, 144, 460 Organometallic complexes Mo-containing, derived Mo/Al₂O₃ catalysts, synthesis and activity in propene metathesis, 139, 134 sorption of metal complexes by support surface, 139, 142 Oscillations in Monte Carlo modeling of bimolecular catalytic reactions, trigger mechanism, 142, 198 Oxidants N₂O, in oxidative coupling of CH₄ over Li⁺/MgO catalyst, **142**, 325 Oxidation alkanes and arenes to alkyl peroxides and phenols by H₂O₂, catalysis by vanadate-pyrazine-2-carboxylic acid, **142**, 147 alkanes over $Mg_3(VO_4)_2$ -MgO, $Mg_2V_2O_7$, and $(VO)_2P_2O_7$, selectivity patterns, **140**, 226 *n*-alkanes and cyclohexane over VS-2, **141**, 604 butane effect of V₂O₅ loading on SiO₂, 144, 202 and phase equilibria, in analysis of MgO-V₂O₅-MoO₃ system, **144**, 597 butene, and proximity of Mo redox sites, 142, 735 catalytic, partial, CH₄ over Ba-Pb, Ba-Bi, and Ba-Sn perovskites, 139, 652 CH₄ on Mo/SiO₂ catalysts, 141, 430 Ni/Al₂O₃ at low temperatures under nonequilibrium conditions: conversion to CO and H₂ with high selectivity and productivity, **139**, 326 Pd on Zr prepared from amorphous Pd₁Zr₃ alloy, 141, 494 ZrO₂, selectivity, effect of zirconia preparation, 141, 279 CH₄ and CO, properties of oxide solid solution catalysts, for analysis, 140, 557 CH₃OH over unsupported and heteropolysalt-supported $H_{3+n}PV_nMo_{12-n}O_{40}$ heteropolyacids, 139, 455 СО on α-Al₂O₃-supported catalysts, structure sensitivity, **140**, 418 by NO over Rh(111), 144, 9 selective catalytic by oxygen over Pt/Al₂O₃ and Pt-CeO₂/Al₂O₃ catabutane to maleic anhydride on VPO catalyst, eflysts fects of Zr, 143, 215 effect of pretreatment step on oxidation mecharemoval of CO from H-rich fuel cell feedstreams, nism, 141, 9 142, 254 reactivity: catalyst characterization by TPR SO₂, Al₂O₃-supported Fe₂O₃-V₂O₅ catalysts subwith CO as reducing agent, 141, 1 jected to, interactions, 139, 1 over Pt-Rh/Al₂O₃, FTIR analysis, 142, 153 toluene over La₁/SrNiO₃ catalysts, 140, 302 on Rh/CeO₂, evidence of second mechanism, 143, Oxidation state Rh/MgO catalysts, CO-induced changes, XPS dec-1-ene in polymer supported Pd(II) Wacker-type study, 140, 564 Oxidative carbonylation catalysts, 142, 540 ethanol to acetaldehyde, catalytic activity of H₂Paniline with Mn-based catalysts, 143, 631 Mo₁₂O₄₀-blended polysulfone film, 144, 348 Oxidative coupling liquid-phase CH₄ hydrocarbons, catalysis and inhibition by H₂O, direct, solid electrolyte-aided, 139, 683 effects of superbasic MgO catalysts, 141, 628 1-methoxy-2-propanol, role of promoted Pt catalysts of designed geometry, 142, 237 Ag catalyst-electrodes deposited on ZrO2, 144, low-temperature CO over Au supported on TiO₂, α -Fe₂O₃, and Co₃O₄, 144, alkali metal compound-promoted ZrO2 catalysts, 175 139, 304 two-component catalyst, Monte Carlo analysis, La₂O₃, formation and stability of La₂O₂CO₃ dur-141, 219 ing, infrared analysis, 142, 18 Li-doped TiO2 catalysts NH₃, in selective catalytic reduction of NO over V catalysts, 142, 182 kinetics, 140, I n-octane, cyclohexane, toluene, xylenes, trimethrole of lattice oxygen, 144, 352 ylbenzenes, and naphthalene in crystalline mi-Li⁺/MgO catalyst with N₂O as oxidant, 142, 325 croporous V-NCL-1 molecular sieve, 143, Mg-Li and Ca-Ni-K oxide catalysts, TPIE anal-275 ysis, 142, 697 partial Mg-Li oxide catalysts at low temperature, effect CH₄ of steam, 141, 713 over MoO₂/SiO₂ catalysts, effect of Mo content oxide-supported Ba catalysts, 143, 286 and type of oxidant, 142, 406 pure and Li-promoted MgO catalysts, active site over Si and Si-supported oxide catalysts, evaluanalysis, 140, 344 ation, 143, 262 pyrochlore structures, effects of bond energy, CH₄ to formaldehyde 140, 328 over MoO3 catalysts SiO₂-supported binary alkali and alkaline earths, transient isotopic labeling analysis under cation effects, 142, 45 steady-state conditions, 142, 226 Oxides role of different crystal planes of MoO3, 141, La_{1x}Sr_xNiO₃ catalysts, toluene rearrangement and 124 disproportionation, 140, 302 TPR method for catalyst analysis, 143, 299 LiYO2 catalysts, structure and performances, active pretreated NaX zeolite, Pt/NaX, and Pt catalysts, phases and decay mechanisms, 141, 583 effect on adsorption and reaction of CO, O2, Ln₂Ti₂O₇ and Ln₂Zr₂O₇, CH₄ oxidative coupling and CO₂, 140, 443 over, effects of bond energy, 140, 328 propane over Mg-Li and Ca-Ni-K catalysts for CH4 oxidative Pt, effect of support material and sulfation, 144, coupling, analysis by TPIE, 142, 697 484 solid solution catalysts, CH₄ coupling reaction, 143, Pt/ZrO₂, 139, 269 2-propanol on Pt-SiO₂ catalysts, analysis, 141, 58 supported Pt catalysts, interpretation of XP spectra, propene 143, 318 over Cu₂ single crystal surfaces, activation at 1 Oxygen atm and 300 K, analysis, 143, 464 adsorption on mild, with Bi molybdates and mixed Co and Fe Ag(III), role of chlorine, 140, 370 molybdates, synergy effect, 142, 381 Ag/α-Al₂O₃ catalysts, analysis by microgravipropylene by adsorbed O₂ on Ag, 141, 300 metric and transient techniques, 143, 481 reduced Pt clusters in Pt-NaY, 144, 506 ZnO, ESR, FTIR spectroscopy, and Microwave -reduction, effect on Raney Ni catalyst, 141, 688 Hall Effect analysis, 140, 585 chemisorption on TiO₂-based catalysts, dynamic ESR analysis, **142**, 719 and CO, adsorption and reaction on NaX zeolite, Pt/ NaX, and Pt, effects of oxidizing and reducing pretreatment, microcalorimetric study, 140, 443 -CO mixtures, and CO, adsorbed, FTIR analysis: bimetallic particle formation in Cu-Ru/MgO catalysts, 142, 437 desorption from Cu-zeolites in NO decomposition, analysis, 143, 520 diatomic, adsorption on Pt/Al₂O₃, Pt/MoO₃, and Pt/ SiO₂ catalysts, 139, 207 and Fe, effect in liquid-phase hydrogenation of α,β -unsaturated aldehydes, **142**, 490 H_{3+π}PV_nMo_{12-n}O₄₀ heteropolyacids, unsupported and heteropolysalt-supported, catalytic behavior in test reaction of CH₃OH oxidation, **139**, 455 -H₂ reaction on Pt, catalytic ignition, analysis, 141, 438 lattice, role in oxidative coupling of CH₄ over Li⁺-doped TiO₂ catalysts, **144**, 352 low-temperature migration from CeO₂ to Rh, 139, 561 in MoO₂/SiO₂ catalysts, effect on partial oxidation of CH₄, **142**, 406 and sulfur, modified Mo(111) surfaces, methylcyclopropane hydrogenolysis over, role of subsurface atoms in active site, 139, 93 Oxygen-18 labeled ethanol, TPD experiments with, in characterization of fluorided Al₂O₃, **140**, 84 P Palladium catalysts Wacker-type, application in oxidation of dec-1-ene, 142, 540 Palladium AlF₃-supported catalysts, dichlorodifluoromethane conversion under hydrogen, **141**, 21 Al₂O₃-supported catalysts analysis by radioactive tracer techniques, enhanced CO desorption due to effect of C₂H₂ and NO in gas phase displacement, 143, 381 kinetics, 143, 369 dichlorodifluoromethane conversion under hydrogen, 141, 21 reforming reactions on, mechanisms, 139, 234 AlPO₄-supported catalysts, acetophenone reduction, linear free energy relationship, 140, 335 catalyzed carbon gasification, analysis by scanning tunneling and atomic force microscopy, 140, 543 catalyzed vapor-phase synthesis of vinyl acetate, role of acetic acid, DRIFTS-mass spectrometric and kinetic analyses, 142, 312 charcoal-supported catalysts, benzylic acetoxylation of toluene to benzyl acetate, 140, 311 -Co -NaY catalysts, CO hydrogenation: effect of ion hydration on metal phases and selectivity, 139, 444 SiO₂-supported alloys, structure and activity for neopentane conversion, **142**, 617 *n*-hexane and methylcyclopentane skeletal reactions, **143**, 583 CO2 reforming of CH4 over, 144, 38 MgO-supported catalysts, NO direct decomposition, active sites and redox properties, **144**, 452 montmorillonite-supported hydrogenation catalysts, with molecular sieve properties, preparation and characterization, 141, 700 -mordenite catalysts, precursor, in formation of Pd aquocomplexes, 143, 314 -Ni, SiO₂-supported catalysts, preparation by coexchange and organometallic chemistry, characterization, 144, 460 particles, in Pd/H-ZSM-5 catalysts, hydrocarbon-induced agglomeration, 140, 481 Pd(II) Wacker-type catalysts, application in oxidation of dec-1-ene, 142, 540 SiO₂-supported catalysts methyl halides adsorption and dissociation, infrared spectroscopic analysis, 143, 138 reversible enhancement by pretreatment temperature, 143, 22 supported hexaaluminate catalysts for high-temperature catalytic combustion, analysis, 142, 655 thin film catalyst, film structure, effects of adsorbates and surface reaction, scanning tunneling microscopic analysis, 143, 409 zeolite-L-supported catalysts, neopentane conversion: effects of protons, ions, and zeolite structure, 141, 337 -Zn, SiO₂-supported catalysts, ester hydrogenation, 140, 406 ZnO-supported catalysts, hydrogenation of 1-butene and 1,3-butadiene mixtures over, 141, 566 ZrO₂-supported catalyst prepared from amorphous Pd₁Zr₃ alloy, CH₄ oxidation over, **141**, 494 Particles bimetallic, formation in Cu-Ru/MgO catalysts: FTIR study of adsorbed CO and CO-O₂ mixtures, **142**, 437 Fe₂O₃ catalyst, size distribution, determination by superparamagnetic Mössbauer relaxation spectra, 142, 552 size determination by EXAFS based on molecular dynamics simulations, 141, 368 **Passivation** effect on thiophene hydrodesulfurization on Co/ Al₂O₃ and Mo/Al₂O₃ catalysts, **144**, 579 Pellets biporous, effect of shape, 141, 737 supporting porous catalysts, heterogeneities in structure and diffusion within, analysis by NMR imaging, 144, 254 n-Pentane acid catalysis over CuY zeolites, 141, 323 Perovskites Ba-Bi, Ba-Pb, and Ba-Sn, catalytic partial oxidation of CH₄ over, 139, 652 rare earth-based, CO and CH₄ oxidation properties, 140, 557 Phase equilibria and butane oxidation, in analysis of MgO-V₂O₅-MoO₃ system, 144, 597 Phase transitions and agglomeration of nanophase iron oxide catalyst, 143. 510 Phenols and alkyl peroxides, H₂O₂ oxidation of alkanes and arenes to, catalysis by vanadate-pyrazine-2-carboxylic acid, **142**, 147 2-Phenyl-2-propanol surface chemistry on oxides, FTIR analysis, 143, 573 12-Phosphomolybdic acid polysulfone film, catalytic activity in oxidation of ethanol to acetaldehyde, 144, 348 Phosphonium chloride -SiO₂, as catalytic support in hydroformylation, analysis, 143, 52 Phosphorus H_{3+n}PV_nMo_{12-n}O₄₀, heteropolyacids, unsupported and heteropolysalt-supported, catalytic behavior in test reaction of CH₃OH oxidation, 139, 455 -V-O catalysts, selective oxidation of butane to maleic anhydride, promotional effects of Zr, 143, 215 **Photocatalysis** heterogeneous processes, quantitative assessment, 143, 149 Photon absorption rate, in assessment of heterogeneous photocatalytic processes, 143, 149 Physical characterization Al_2O_3 -, MoO_3 -, and SiO_2 -supported Pt catalysts, 139, 191 **Pillaring** Mg-rectorite with Al₂O₃-clusters, effect of V, 141, 510 montmorillonites with Al₂O₃, characterization with atomic force microscopy, **142**, 337 Piperidine denitrogenation on Al₂O₃, SiO₂, and SiO₂-Al₂O₃, effects of surface acidity, **137**, 453; letter to editor, **141**, 316; reply, **141**, 318 zeolite unit cell size, sulfur content, and coke deposition, 135, 481; erratum, 141, 321 Plasmas microwave, in direct continuous low-power catalytic conversion of CH₄ to higher hydrocarbons, 139, 383 Platinum η-Al₂O₃-, Al₂O₃-, SiO₂-, and TiO₂-supported catalysts benzene hydrogenation, 143, 539 benzene and toluene hydrogenation: reaction models for metal surfaces and acidic sites on oxides. 143, 563 toluene hydrogenation, 143, 554 Al₂O₃-, MoO₃-, and SiO₂-supported catalysts CO and O₂ adsorption on, 139, 207 hydrocarbon adsorption on, 139, 221 preparation and physical characterization, 139, 191 γ-Al₂O₃ and SiO₂-supported catalysts, hydrogen temperature-programmed desorption, **143**, 395 Al₂O₃-supported catalysts CO hydrogenation over, roll of spillover, 139, 421 coke and product profiles, modification in *n*-heptane reforming, 141, 389 in enantioselective hydrogenation of ethyl pyruvate, catalyst modification by cinchona alkaloids, kinetic modeling, 144, 569 liquid-phase hydrogenation of α,β -unsaturated aldehydes, effect of O_2 and Fe, 142, 490 preparation by sol-gel method, 144, 395 α -Al₂O₃-supported catalysts, CO oxidation, structure sensitivity, **140**, 418 γ-Al₂O₃- and zeolite β-supported catalysts for reforming reactions, comparison, **140**, 526 γ-Al₂O₃-, ZrO₂-, and SiO₂-supported catalysts propane oxidation over, effect of sulfation, **144**, 484 -Au, Al₂O₃-supported catalysts, preparation, characterization, and dehydrogenation activity, 144, 30 γ-Al₂O₃-supported catalysts, sintering in NO, observation by CO TPD and TEM, 144, 60 as catalyst in direct continuous low-power conversion CH₄ to higher hydrocarbons via microwave plasmas, 139, 383 catalyzed carbon gasification, analysis by scanning tunneling and atomic force microscopy, 140, 543 charcoal-supported catalysts, stereoselective thymol hydrogenation on, kinetics, 140, 30 CO₂ reforming of CH₄ over, 144, 38 covered Fe(100), oxidized surface, reduction by H_2 , 143, 102 -Cr intermetallic clusters in zeolites, aromatization and reforming catalyst models oxidation states, dispersion, and local structure, 141, 250 structure-function relationships, 141, 266 films deposited on Y_2O_3 -doped ZrO_2 , CH_4 oxidation on, NEMCA effect, 140, 53 H-LTL-, H-MAZ-, and K-LTM-supported catalysts, hydrogen pretreatment, effect on structure of metal-support interface, 144, 611 H-mordenite-supported, *n*-heptane conversion over, effect of reduction temperature, **144**, 1 H₂-O₂ reaction, catalyic ignition, analysis, 141, 438 -H-ZSM-5-Al₂O₃ catalysts, acidity, intercrystalline mass transfer, and catalytic properties, effect of coke deposition, 144, 16 KL zeolite-supported hexane aromatization catalysts, performance and Pt particle size and location, effect of sulfur, 139, 48 MgO-supported catalysts, for hydrogenolysis reactions of C₅ and C₆ hydrocarbons, metal-support interaction, 143, 122 MoO3-supported catalysts H₂ spillover in characterization and kinetics, 139, 153 kinetic modeling, 139, 175 mordenite-supported catalysts, H-D exhange of cyclopentane: monoatomic sites, 140, 601 -Mo/SiO₂ catalysts, butane hydrogenolysis over, kinetics, 144, 118 -Mo, SiO₂-supported catalysts, butane hydrogenolysis over, kinetics, 144, 118 NaX zeolite-supported catalysts, adsorption and reaction of CO, O_2 , and CO_2 on, effect of oxidizing and reducing pretreatment, microcalorimetric study, 140, 443 promoted catalysts, of designed geometry, preparation, and role of promoters in liquid-phase oxidation of 1-methoxy-2-propanol, 142, 237 promoted SO₂²-ZrO₂-supported catalysts, state of Pt, **143**, 322 and Pt-CeO, Al₂O₃-supported catalysts, in CO oxidation by O₂ effect of pretreatment step on oxidation mechanism, 141, 9 reactivity: catalyst characterization by TPR with CO as reducing agent, 141, 1 –Re Al₂O₃-supported catalysts, coke and product profiles, modification in *n*-heptane reforming, **141**, 389 γ-Al₂O₃-supported model catalyst prepared from [Re₂Pt(CO)₁₂], synthesis and spectroscopic characterization, **140**, 190 reduced clusters, oxidation in Pt-NaY, 144, 506 -Rh/Al₂O₃-supported catalysts, CO oxidation over, FTIR analysis, **142**, 153 SiO₂- and Al₂O₃-supported catalysts, interpretation of XP spectra in oxidized and sulfided state, 143, 318 SiO₂-supported catalysts 2-propanol oxidation on, analysis, 141, 58 reversible enhancement by pretreatment temperature, 143, 22 ring-opening reaction of propylcyclobutane at different temperatures, H₂ pressure dependence, 143, 111 SiO₂-supported EUROPT-1 catalysts skeletal reactions of heptane isomers over, comparison with Pt-black catalysts, 141, 648 TiO₂- and Al₂O₃-modified, propane and *n*-butane hydrogenolysis, **142**, 512 -Sn, Al₂O₃-supported reforming catalysts, analysis by Mössbauer spectroscopy, 142, 641 TiO₂-supported catalysts, preparation mode effect on metal-support interactions, **143**, 155 -WO₃, Al₂O₃-supported catalysts, reactions of labeled hexanes on, 139, 256 zeolite catalysts, CO adsorption, analysis by infrared spectroscopy, 141, 465 ZrO₂-SO₄-supported catalysts, isomerization of alkanes, promotion by adamantyl hydride transfer species, 144, 238 ZrO₂-supported, propane oxidation over, 139, 268 Platinum-black catalysts, skeletal reactions of heptane isomers over, comparison with Pt/SiO₂ EUROPT-1 catalyst, 141, 648 Pollucite, see Cesium Polymerization ethylene with Si₂H₂O-supported catalysts, **141**, 524 Polymers onium chains on SiO₂, as catalytic support in hydroformylation, analysis, 143, 52 support of Pd(II) Wacker-type catalysts, application in oxidation of dec-1-ene, 142, 540 Porous catalysts support pellets, heterogeneities in structure and diffusion, analysis by NMR imaging, 144, 254 Potassium -Bi-graphite intercalation compound, as catalyst for styrene synthesis, 144, 627 Ca-Ni-K oxide catalysts for CH₄ oxidative coupling, analysis by TPIE, 142, 697 doped reduced form of NiO, structural and catalytic properties, 142, 392 MoS₂-supported catalysts, alkali promoter in, structure, distribution, and effects on alcohol synthesis from syngas, 142, 672 promotion of Rh/La₂O₃ catalysts, XPS and reaction studies, **140**, 453 Potassium carbonate catalyzed carbon gasification, analysis by scanning tunneling and atomic force microscopy, 140, 543 Powders Fe and Rh and Rh/Fe, highly dispersed, synthesis, characterization, and catalytic hydrogenation activity, 139, 504 Praseodymium oxide and oxides of Ce, La, and Sm, catalysis of CH₄ oxidative dehydrogenation, effect of CCl₄, 139, 338 Precipitation from homogenous solution method, MoS₂/Al₂O₃ hydroprocessing catalysts prepared by, characterization and analysis, **142**, 121 Propane acrylonitrile from, on (VO)₂P₂O₇ with preadsorbed NH₃ ammonia adsorption mechanism and reaction with C₃, 142, 84 selectivity determination, role of competitive adsorption phenomena, 142, 70 conversion over Ga-H-ZSM-5, dehydrogenating and acid functions, effects of aging pyridine as infrared probe, 139, 679 dehydrocyclodimerization by GaAl₁₂-, -Ga₁₃-, Al₁₃-, and Cr-pillar interlayered clay minerals and Ga-H-ZSM-5 zeolite, comparison, **142**, 448 hydrogenolysis on Pt/SiO₂ catalysts, modification by TiO₂ and Al₂O₃, **142**, 512 oxidation over Pt, effect of support material and sulfation, 144, 484 Pt/ZrO₂, 139, 268 oxidative dehydrogenation by V-Mg-O catalysts, effect of preparation methods, **144**, 425 1-Propanol decomposition on Al₂O₃ and Ni/Al₂O₃ catalysts by reverse spillover, 144, 214 2-Propanol alkaline earth metaphosphates, as acid catalysts: comparison with crystalline catalysts, 139, 568 oxidation over Pt-SiO₂ catalysts, 141, 58 Propene metathesis activity of Mo/Al₂O₃ catalysts prepared via metal complex precursors, 139, 134 Re₂O₇-γ-Al₂O₃ catalysts, effect of calcination temperature, **144**, 472 oxidation over Cu₂ single crystal surfaces, activation at 1 atm and 300 K, analysis, 143, 464 mild, with Bi molybdates and mixed Co and Fe molybdates, synergistic effect, 142, 381 n-Propylbenzene disproportionation on zeolites, associated coke formation, 142, 664 Propylcyclobutane ring-opening reaction over Pt/SiO₂ catalyst at different temperatures, H₂ pressure dependence, 143, 111 Propylene catalytic conversion of CH₃Cl over P-modified Mg-ZSM-5 zeolites, **143**, 32 hydroformylation on Rh/SiO₂ and sulfided Rh/SiO₂, n-butyraldehyde and and iso-butyraldehyde formation, infrared analysis, 144, 131 metathesis, Mo(100) single crystal-catalyzed, kinetics, 143, 92 oxidation by adsorbed O₂ on Ag, 141, 300 Protons effects on neopentane conversion catalyzed by Pd in L zeolite, 141, 337 Pyridine absorbed on solid acid catalysts, infrared absorption bands, determination of integrated molar extinction coefficients, 141, 347 as infrared probe in analysis of effect of aging on acid and dehydrogenating functions of Ga-H-ZSM-5 in propane conversion, 139, 679 **Pyrochlores** Ln₂Ti₂O₇ and Ln₂Zr₂O₇, CH₄ oxidative coupling over, effects of bond energy, **140**, 328 Q Quantum yield in assessment of heterogeneous photocatalytic processes, 143, 149 Quinoline hydrodenitrogenation over high-surface-area Mo₂N, 139, 34 R Raman spectroscopy surface chemistry of supported CrO₃ catalysts, 142, surface Re₂O₇-support interaction for supported Re₂O₇ catalysts, **141**, 419 Raney catalysts Ni, structural, adsorptive, and catalytic properties, effect of redox treatment, 141, 688 Rate coefficients chain initiation, propagation, and termination during Fischer-Tropsch synthesis over Ru/TiO₂, estimates, 139, 104 Reduction by H₂, oxidized Pt/Fe(100) surfaces, 143, 102 K-doped form of NiO, structural and catalytic properties, 142, 392 -oxidation, effect on Raney Ni catalysts, 141, 688 pretreatment of NaX zeolite, Pt/NaX, and Pt catalysts by, effect on adsorption and reaction of CO, O₂, and CO₂, 140, 443 related properties of Fe species in Fe-supported Y-zeolite, TPR analysis, **142**, 274 selective catalytic NO by CH₄ over Co-exchanged ZSM-5, effect of water vapor, 142, 561 by NH₃ over Fe-Y zeolites, kinetic and infrared spectroscopic analysis, 142, 572 SO₄⁻²/TiO₂ superacid catalyst, 139, 277 temperature-programmed, see Temperature-programmed reduction Reforming catalysts and aromatization for intermetallic Pt-Cr clusters in zeolites oxidation states, dispersion, and local structure, characterization, 141, 250 structure-function relationships, 141, 266 Reforming reactions y-Al₂O₃- and zeolite β-supported Pt catalysts for, comparison, **140**, 526 #### Rhenium Al₂O₃-supported catalyst, in chemisorption of CO₂, 139, 688 -Pt - Al₂O₃-supported catalysts, coke and product profiles, modification in *n*-heptane reforming, **141**, 389 - γ-Al₂O₃-supported model catalyst prepared from [Re₂Pt(CO)₁₂], synthesis and spectroscopic characterization, 140, 190 ## Rhenium oxide - -γ-Al₂O₃ catalysts, in metathesis of propene, effect of calcination temperature, 144, 472 - Al₂O₃-, TiO₂-, ZrO₂-, SiO₂-, and MgO-supported catalysts, support interaction analysis by Raman spectroscopy, **141**, 419 ### Rhodium Al₂O₃-supported catalysts dispersion, effects of high-temperature aging, 144, 296 interaction with H_2 and CO, effect of carrier, 140, 353 in methanation of CO and CO₂ with pulsed-flow microreactors, **143**, 308 microstructural changes and volatilization in NO and CO, 140, 424 XAFS analysis after treatment in high-temperature oxidizing environments, 144, 311 Al₂O₃-, TiO₂-, SiO₂-, and MgO-supported catalysts, CH₄ activation and reaction with CO₂ over, **141**, 287 catalyzed carbon gasification, analysis by scanning tunneling and atomic force microscopy, 140, -Ce catalysts, microstructural changes and volatilization in NO and CO, 140, 424 CeO₂-supported catalysts evidence for low-temperature O₂ migration from CeO₂ to, **139**, 561 second CO oxidation mechanism, 143, 86 CO₂ reforming of CH₄ over, 144, 38 crystallites, CO-induced morphological changes, mechanisms, kinetics, and real-space imaging on atomic scale, 144, 525 doped CeO₂, water-gas shift reaction, reactant-promoted reaction mechanism for, 141, 71 and Fe and Rh and Rh/Fe powders, highly dispersed, synthesis, characterization, and catalytic hydrogenation activity, 139, 504 foil, CO and CO₂ hydrogenation rates, effects of VO_X deposits, 139, 602 Hy- and NaHY zeolite-supported catalysts, 141, 407 La₂O₃-promoted catalysts, TPR, 140, 439 La₂O₃-promoted catalysts, 1PR, 140, 439 La₂O₃-supported catalysts, alkali promotion, XPS and reaction studies, 140, 453 MgO- and Al₂O₃-supported catalysts, CO adsorption on small particles, SSIMS and TPD analyses, 143, 492 MgO-supported catalysts, oxidation state, CO-induced changes, XPS study, 140, 564 -Mo interaction in Rh/Mo/Al₂O₃, 141, 478 -Pt/Al₂O₃-supported catalysts, CO oxidation over, FTIR analysis, **142**, 153 Rh(110), acetate stabilization and autocatalytic decomposition, 142, 630 SiO₂-, Al₂O₃-, and TiO₂-supported catalysts interaction with C₇H₈ and benzene, **143**, 175 SiO₂-supported catalysts CO absorption on, characterization with quantitative FTIR, 139, 551 CO hydrogenation and TPR, 144, 439 formation of *n*-butyraldehyde and iso-butyraldehyde by propylene hydroformylation, infrared analysis, **144**, 131 hydrogenolysis of neopentane over, effects of protons, 141, 407 interaction with H₂ and CO, effect of carrier, 140, methanation and ethylene hydroformylation over, transient infrared study, 140, 281 microstructural changes and volatilization in NO and CO, 140, 424 reversible enhancement by pretreatment temperature, 143, 22 TiO₂-supported catalysts, interaction with H₂ and CO, effect of carrier, 140, 353 V₂O₅-supported catalysts, fresh and reduced, electron optical studies, **140**, 173 #### Rhodium(111) nitrogen atoms on catalysts, molecular formation, 144, 273 NO over, in oxidation of CO, 144, 9 ## Rhodium chloride and Rh(NO₃)₃, SiO₂-supported catalysts, adsorbed Rh⁺(CO)₂ and CO, interactions with C₂H₄ and H₂ infrared studies, **139**, 490 # Rhodium gem-dicarbonyl and CO, adsorbed on RhCl₂/SiO₂ and Rh(NO₃)₃/SiO₂, interactions with C₂H₄ and H₂, **139**, 490 ## Rhodium nitrate and RhCl₃, SiO₂-supported catalysts, absorbed Rh⁺(CO)₂ and CO, interactions with C₂H₄ and H₂, infrared study, **139**, 490 # Ring opening reactions propylcyclobutane over Pt/SiO₂ catalyst at different temperatures, H₂ pressure dependence, **143**, 111 ## Rubidium promotion of Rh/La₂O₃ catalysts, XPS and reaction studies, 140, 453 ## Ruthenium - and Ag(1010) bimetallic surfaces, interactions of CO and H₂ with, 139, 611 - γ-Al₂O₃-supported catalysts, Fischer-Tropsch reaction studies, production of alkenes and high molecular weight hydrocarbons in fixed bed reactor, 143, 166 - catalysts, hydrocarbon chain growth on, role of olefin readsorption and H₂/CO reactant ratio, 139, 576 CO2 reforming of CH4 over, 144, 38 -Co/TiO₂- and SiO₂-supported catalysts in Fischer-Tropsch synthesis, bimetallic synergy, analysis, 143, 345 -Cu, MgO-supported catalysts, formation of bimetallic particles: FTIR study of adsorbed CO and CO-O₂ mixtures, 142, 437 in faujasite zeolites, characterization and NH₃ synthesis activity, 141, 191 Ni_xRu_{1-x} , Al_2O_3 -supported, characterization and catalytic properties, **142**, 455 SiO₂-supported catalysts CO/H₂ reactions at high pressure and temperature, in situ FTIR analysis, 141, 355 reversible enhancement by pretreatment temperature, 143, 22 sol-gel, analysis, 141, 114 TiO₂-supported catalyst, Fischer-Tropsch synthesis over, chain initiation, propagation, and termination during, estimates of rate coefficients for, 139, 104 zeolite-supported catalysts, effect of dealumination, 142, 531 ZnO-supported catalysts, NO-CO interaction and NO adsorption, 141, 486 S Samarium oxide and oxides of Ce, La, and Pr, catalyzed oxidative dehydrogenation of CH₄, effect of CCl₄, 139, 338 Sample system improved for infrared study of supported metal catalysts, 139, 691 Scanning tunneling microscopy in analysis of catalyzed carbon gasification, 140, 543 H₂ gasification of MoS₂, 144, 77 Pd thin-film catalyst, film structure, effects of adsorbates and surface reaction, 143, 409 Secondary ion mass spectrometry in analysis of Rh-Mo interaction in Rh/Mo/Al₂O₃, 141, 478 Self-organization molecular, effect in Monte Carlo modeling of bimolecular catalytic reactions, 142, 198 Self-oscillations in Monte Carlo modeling of bimolecular catalytic reactions, trigger mechanism, 142, 198 Shape selectivity diffusivity in ZSM-5 zeolites, 142, 691 zeolites, based on sorption data, 142, 303 Silica, see Silicon dioxide Silicon -CuCl mixtures, pretreatment conditions, effect on rate and selectivity in Si-CH₄O reaction with Cu(l)Cl catalyst, 143, 64 surface enrichment of, calcination-induced, effect on catalytic properties of iron oxide, 141, 161 Silicon carbide supported Ag catalysts for oxidative dehydrogenation of ethylene glycol into glyoxal, effect of diethylphosphite, 142, 729 Silicon dioxide -aluminas, amorphous, pyridine absorbed on, infrared absorption bands, integrated molar extinction coefficients, 141, 347 benzoyl compounds on, surface chemistry, FTIR analysis, 143, 573 gels, formation in deactivation of hydrotreating catalysts, characterization of spent catalyst, 143, 45 nitrosobenzene and nitrobenzene adsorption and surface reactions, infrared spectroscopic analysis, 141, 82 and SiO₂-Al₂O₃, in piperidine denitrogenation on effects of surface acidity, **137**, 453; letter to editor, **141**, 316; reply, **141**, 318 support of Co-Ru catalysts in Fischer-Tropsch synthesis, bimetallic synergy, analysis, 143, 345 CrO₃, surface chemistry analysis by Raman spectroscopy, 142, 166 Cu catalysts CO and CO₂ interactions with, infrared analysis. 142, 27 H₂, CO₂, and CO interactions with, analysis by TPD, **144**, 227 K-promoted, CH₄O and methyl formate adsorption, FTIR analysis, 142, 263 particle size determination by EXAFS based on molecular dynamics, 141, 368 metal catalysts, infrared spectroscopy studies, improved sample system for, 139, 691 Mo catalysts characterization and modeling of Mo species after redox thermal treatments, 141, 453 CH₄O oxidation over, 141, 430 MoO₃ catalysts, partial oxidation of CH₄ on, effect of Mo content and type of oxidant, **142**, 406 MoO₃ and V₂O₅ catalysts, in partial oxidation of CH₄ on, **143**, 262 Ni catalyst, unsteady-state methanation of CO, 139, 62 Ni and Ni-Cu catalysts, kinetics of carbon formation from CH₄ and H₂, 139, 513 Ni, Pd, Pt, Rh, and Ru catalysts, reversible enhancement by pretreatment temperature, 143, 22 Pd catalysts, methyl halide adsorption and dissociation, infrared spectroscopic analysis, 143, 138 Pd-Co alloy catalysts, structure and activity neopentane conversion, **142**, 617 n-hexane and methylcyclopentane skeletal reactions, 143, 583 Pd-Ni catalysts, preparation by coexchange and organometallic chemistry, characterization, 144, 460 Pd-Zn catalysts, ester hydrogenation, 140, 406 Pt catalysts benzene hydrogenation, 143, 539 benzene and toluene hydrogenation: reaction models for metal surfaces and acidic sites on oxide supports, 143, 563 catalyst preparation and physical characterization, 139, 191 CO and O2 adsorption, 139, 207 H₂ temperature-programmed desorption, 143, 395 hydrocarbon adsorption, 139, 221 for propane and n-butane hydrogenolysis: TiO₂and Al₂O₃- modified EUROPT-1, **142**, 512 propane oxidation over, effect of sulfation, **144**, 2-propanol oxidation on, analysis, 141, 58 ring-opening reaction of propylcyclobutane at different temperatures, H₂ pressure depen- dence, 143, 111 skeletal reactions of heptane isomers over, comparison with Pt-black catalysts, 141, 648 toluene hydrogenation, 143, 554 Pt-Mo catalysts, butane hydrogenolysis, kinetics, 144, 118 Re catalysts, hydrogenolysis of neopentane over, effects of protons, 141, 407 Re₂O₇ catalysts, analysis by Raman spectroscopy, 141, 419 Rh catalysts CO absorption catalyst characterization with quantitative FTIR, 139, 551 CO hydrogenation and TPR of La₂O₃-promoted catalysts, **144**, 439 formation of *n*-butyraldehyde and iso-butyraldehyde by propylene hydroformylation, infrared analysis, **144**, 131 interaction with C_7H_8 and benzene, 143, 175 interaction with H_2 and CO, effect of carrier, 140, 353 in methanation and ethylene hydroformylation, transient infrared study, 140, 281 RhCl₃ and Rh(NO₃)₃ catalysts: interactions of C₂H₄ and H₂ with adsorbed Rh⁺(CO)₂ and CO, 139 490 Rh and Rh/Ce catalysts, microstructural changes and volatilization in NO and CO, 140, 424 Ru, CO/H₂ reactions over, at high pressure and temperature, in situ FTIR analysis, **141**, 355 sol-gel Ru catalysts, analysis, **141**, 114 V_2O_5 loading, effect on butane oxidation, 144, 202 Silicotungstic acid in catalysis of aldehydes, conversion to 1,1-diacetate, 141, 308 ## Siloxene support of Ziegler ethylene polymerization catalysts, 141, 524 Silver Ag(III), oxygen adsorption, role of chlorine, 140, 370 α-Al₂O₃-supported catalysts metal surface area for, effect of loading, 139, 41 oxygen adsorption, analysis by microgravimetric and transient techniques, 143, 481 catalyst-electrodes deposited on ZrO₂, CH₄ oxidative coupling on, 144, 333 olefin combustion, rate limiting step, analysis, 141, 300 and $Ru(10\overline{10})$ bimetallic surfaces, interactions with CO and H_2 , 139, 611 SiC-supported catalysts for oxidative dehydrogenation of ethylene glycol into glyoxal, effect of diethylphosphite, 142, 729 ## Sintering γ-Al₂O₃-supported Pt catalysts in NO, observation by CO TPD and TEM, **144**, 60 Sol-gel method preparation of Pt/Al₂O₃ catalysts, analysis, **144**, 395 Ru/SiO₂ catalysts, analysis, **141**, 114 Solid-base catalysts skeletal rearrangement of nitriles over, 141, 94 Solvents effects on deep hydrodesulfurization of CoMo/ Al₂O₃-catalyzed henzothiophene and dibenzothiophene, **140**, 184 Sorption argon in ZSM-5, 139, 19 metal complexes by support surface, in preparation of Mo/Al₂O₃ catalysts, 139, 142 ratio, cyclohexane to *n*-hexane, in analysis of zeolite shape selectivity, **142**, 303 Spectroscopy, see also specific techniques Auger electron, in analysis of Fe-based Fischer-Tropsch catalyst surface composition, effects of CO activation, 140, 136 hydrogen activation, 140, 121 impedance, in characterization of heterogenous catalysts, 140, 464 Spillover in hydrogen interaction with metal sulfide catalysts, direct observation, 140, 287 hydrogen in Pt/MoO3 catalysts characterization and kinetics, 139, 153 kinetic modeling, 139, 175 role in CO hydrogenation over Al₂O₃-supported Pt, 139, 421 SSIMS, see Static secondary ion mass spectrometry Stabilization acetate on Rh(110), 142, 630 Stannic oxide SO₄-supported catalysts, Lewis site acid strength, scaling by EPR and NMR, 140, 497 Static secondary ion mass spectrometry in analysis of CO adsorption on small supported Rh particles, 143, 492 Steam effect on CH₄ oxidative coupling over Mg-Li oxide catalysts, **141**, 713 Strontium La_{1x}Sr_xNiO₃ catalyst, toluene rearrangement and disproportionation, **140**, 302 Structure and activity, SiO₂-supported Pd-Co alloys: n-hexane and methylcyclopentane skeletal reactions, 143, 583 biporous pellets, effect of shape, 141, 737 disorder in (VO)₂P₂O₇, physicochemical analysis, 141, 671 homogeneities, within porous catalyst support pellets, analysis by NMR imaging, 144, 254 MEL, crystalline and microporous vanadium silicates with, FTIR, NMR, and ESR spectroscopy and catalytic oxidation of alkylaromatics over VS-2, 141, 595 metal-support interface in Pt/zeolite catalysts, effect of H pretreatment, 144, 611 nanophase iron oxide catalysts, XAFS and XANES analyses, 143, 499 NiO, transformation on CO hydrogenation, effect of NiO morphology, 144, 50 Pt/α-Al₂P₃ catalysts, effect on CO oxidation, 140, 418 USY zeolites, effect on transalkylation of alkylaromatics, 140, 384 zeolite, effect on neopentane conversion catalyzed by Pd, 141, 337 Styrene hydroformylation, onium-SiO₂ catalytic support, 143 52 oxidative methylation of C_7H_8 with CH_4 over MgO, 143, 1 synthesis, Bi-K-graphite intercalation compound as catalyst for, 144, 627 Sulfate doped ZrO₂ catalysts, surface acidity, **142**, 349 and SO₄²⁻, support of Pt catalyst, state of Pt, **143**, 322 SO₄² TiO₂-supported superacid catalyst, selective catalytic reduction of NO with NH₃ on, **139**, 277 Sulfation and support material, effect on propane oxidation activity over Pt, 144, 484 Sulfhydryl groups presence in Mo/Al₂O₃-based catalyst and role in acidity and activity, **139**, 641 Sulfidation Co/Al₂O₃ and CoMo/Al₂O₃ catalysts, analysis by Mössbauer emission spectroscopy, **143**, 601 related properties of Fe species in Fe-supported Y-zeolite, temperature-programmed sulfiding analysis, 142, 274 Rh/SiO₂ catalysts, formation of *n*-butyraldehyde and iso-butyraldehyde by propylene hydroformylation, infrared analysis, **144**, 131 W/C and Ni-W/C catalysts, subsequent EXAFS study of Ni and W environments, 139, 525 zirconium hydroxide, superacid and catalytic properties, 143, 616 Sulfides transition metal, supported catalysts, in selective reduction of diphenyldisulfides, 144, 160 Sulfiding supported Pt catalysts, interpretation of XP spectra, 143. 318 Sulfur adsorption on Co catalysts, relationship to C deposition, 143, 449 compounds, hydrodenitrogenation reactions due to side reactions with, catalytic tests for, secondary effects, 142, 725 content of commercial hydrocracking catalysts, effects on catalyst activity and deactivation during piperdine hydrogenolysis, 135, 481; erratum, 141, 321 Co₉S₈ and NiMoS synergy in hydrogenation of cyclohexene and hydrodesulfurization of thiophene, 139, 371 effect on performance and Pt particle size and location in Pt/KL hexane aromatization catalysts, 139, 48 Ni_xRu_{1-x}, Al₂O₃-supported, characterization and catalytic properties, **142**, 455 and oxygen, modified Mo(111) surfaces, methylcyclopropane hydrogenolysis over, role of subsurface atoms in active site, 139, 93 Sulfur dioxide exposed $Fe_2O_3-V_2O_5$ catalysts on Al_2O_3 support, interactions, 139, 1 Superacids and catalytic properties, sulfated zirconia, **143**, 616 solid, SO₄⁻², selective catalytic reduction of NO with NH₃ on, **139**, 277 Superconducting oxides with K₂NIF₄ structure, CO and CH₄ oxidation properties, 140, 557 Surface area Ag, for Ag/α - Al_2O_3 catalysts, effect of loading, 139. Surface chemistry xylenes over H-ZSM-5 zeolites, 139, 24 Surface reactions effects on film structure of Pd thin-film catalysts: scanning tunneling microscopy, 143, 409 nitrosobenzene and nitrobenzene adsorption, analysis by infrared spectroscopy, 141, 82 Surfaces calcined enrichment of impurities, effect on catalytic properties of iron oxide, 141, 161 copper-nickel catalysts, composition, catalyst deactivation due to changes in, 140, 16 Fe-based Fischer-Tropsch catalysts, composition, effects of CO activation, 140, 136 hydrogen activation, 140, 121 Mo(111), S- and O-modified, methylcyclopropane hydrogenolysis over, role of subsurface atoms in active site, 139, 93 Synergy bimetallic, in Co-Ru Fischer-Tropsch synthesis catalysts, 143, 345 Syngas alcohol synthesis from: structure, distribution, and effect of K/MoS₂ catalyst alkali promoter, **142**, 672 T Telomerization associated model for Co-catalyzed Fischer-Tropsch products, 139, 591 TEM, see Transmission electron microscopy Temperature calcination, effect on activity of Re₂O₇/γ-Al₂O₃ catalysts for metathesis of propene, **144**, 472 low, CH₄ oxidative coupling over Mg-Li oxide catalysts, effect of steam, 141, 713 pretreatment, effect on SiO₂-supported group VIII metal catalysts, reversible activity enhancement, **143**, 22 reduction, effect on *n*-heptane conversion over H-mordenite-supported PT catalyst, **144**, 1 Temperature-programmed desorption in analysis of alcohol decomposition on Al₂O₃ and Ni/Al₂O₃ catalysts by reverse spillover, 144, 214 CO adsorption on small supported Rh particles, 143, 492 CO chemisorption on Cu films on ZnO, 141, 380 Cu-ZSM-5 zeolites, characterization of ion-exchange Cu properties, 142, 708 H₂, CO, and CO₂ interactions with Cu/SiO₂, 144, 227 H, Na-Y zeolites, 144, 193 H₂ and N₂ interaction with Fe catalysts for NH₃ synthesis, 142, 135 oxygen adsorption on Ag/α-Al₂O₃, 143, 481 CO, in observation of γ-Al₂O₃-supported Pt catalyst sintering in NO, 144, 60 ethanol- ^{18}O , in characterization of fluorided Al_2O_3 , 140, 84 H₂ of supported Pt catalysts, 143, 395 and kinetic modeling, in analysis of N molecular formation from atoms on Rh(111) catalysts, 144, 273 of NH₃, C₂H₄, and 1-C₄H₈, in analysis of acid sites on boralites, 144, 285 oxygen from Cu-zeolites in NO decomposition, analysis, 143, 520 specific for methanol dehydration on MeAPSO-44, SAPO-44, AlPO₄-5, AlPO₄-14, comparison: acidity and catalytic activity, **139**, 351 Temperature-programmed isotope exchange in analysis of Ca-Ni-K and Mg-Li oxide catalysts for CH₄ oxidative coupling, 142, 697 Temperature-programmed oxidation coke from cumene cracking over crystalline microporous MAPO-36, 144, 148 Temperature-programmed reaction in catalyst analysis in partial oxidation of CH₄ to formaldehyde, 143, 299 Temperature-programmed reduction in analysis of model γ-Al₂O₃-supported Re/Pt catalyst prepared from [Re₂Pt(CO)₁₂], **140**, 190 reducibility of Ni-Mo/Al₂O₃ catalysts, 139, 540 reduction and sulfidation properties of Fe species in Fe-supported Y-zeolite, 142, 274 surface species formation upon supporting MoO₃ on Al₂O₃ by mechanical mixtures, **141**, 48 CeO₂ crystallite size, **103**, 502; *erratum*, **140**, 612 and CO hydrogenation of La₂O₃-promoted Rh/SiO₂ catalysts, **144**, 439 with CO as reducing agent in analysis of Pt/Al₂O₃ and Pt-CeO₂/Al₂O₃ catalysts in oxidation of CO by oxygen, 141, 1 Temperature-programmed sulfiding in analysis of reduction and sulfidation properties of Fe species in Fe-supported Y-zeolite, 142, 274 Thermal stability SAPO-34, multinuclear NMR analysis, 143, 430 zirconia as catalyst support: kinetics and modeling, 139, 329 Thermogravimetric analysis characterization of H,Na-Y zeolites, 144, 193 Thiophene hydrodesulfurization Mo/Al₂O₃ and Co/Al₂O₃ catalysts, effect of passivation, **144**, 579 related synergy between NiMoS and Co₉S₈, 139, 371 hydrosulfurization catalytic activity of WO₃/USY zeolite, characterization, 141, 206 Thymol stereoselective hydrogenation on charcoal-supported platinum catalysts, kinetics, 140, 30 Tin Ba perovskites, catalytic partial oxidation of CH₄ over, 139, 652 -Pt, Al₂O₃-supported reforming catalysts, analysis by Mössbauer spectroscopy, 142, 641 Titanium Ln₂Ti₂O₇, CH₄ oxidative coupling over, effects of bond energy, 140, 328 Titanium dioxide based catalysts, O₂ chemisorption, dynamic ESR analysis, 142, 719 -chromia catalysts, preparation, chemical and structural changes during, EPR study, 143, 201 Li+-doped catalysts CH₄ oxidative coupling over, kinetics, 140, 1 lattice O₂, of CH₄ and C₂H₆, transient kinetic study, 141, 612 modification of EUROPT-1, reaction of propane and *n*-butane on, **142**, 512 single crystal and polycrystalline surfaces, acetaldehyde aldolization on, C-C bond formation via, 139, 119 SO₄-supported catalysts, Lewis site acid strength, scaling by EPR and NMR, 140, 497 support of Au catalysts, low-temperature oxidation of CO over, 144, 175 Co-Ru catalysts in Fischer-Tropsch synthesis, bimetallic synergy, analysis, 143, 345 CrO₃ surface chemistry analysis by Raman spectroscopy, 142, 166 Pt catalysts benzene hydrogenation, 143, 539 effect of preparation mode on metal-support interactions, 143, 155 toluene hydrogenation aromatic carbons, 143, 554 reaction models for metal surfaces and acidic sites on oxide supports, 143, 563 Re₂O₇ catalysts, analysis by Raman spectroscopy, 141, 419 Rh catalysts, interaction with C₇H₈ and benzene, 143, 175 CO and H₂, effect of carrier, 140, 353 Ru catalysts, Fischer-Tropsch synthesis, chain initiation, propagation, and termination during, estimates of rate coefficients for, 139, 104 SO₄⁻ superacid catalyst, selective catalytic reduction of NO with NH₃, **139**, 277 Titanium oxide Li*-doped catalysts, oxidative coupling of CH₄ over, role of lattice oxygen, 144, 352 Titanium silicalite and H₂O₂, epoxidation of lower olefins with, 140, 71 Titanium tetrachloride reaction with Si_2H_2O , in formation of catalyst, 141, 524 Toluene alkylation with CH₄ on zeolite H-ZSM-5 and isomerization of xylenes, 141, 548 and benzene, interaction with Rh on SiO₃, Al₂O₃, and TiO₃ carriers, 143, 175 heterogeneous catalyzed benzylic acetoxylation to benzyl acetate, 140, 311 hydrogenation over supported Pt catalysts aromatics, 143, 554 reaction models for metal surfaces and acidic sites on oxide supports, 143, 563 oxidation, in crystalline microporous V-NCL-1 molecular sieve, 143, 275 oxidative methylation, to styrene and ethylbenzene, with CH₄ over MgO, 143, 1 rearrangement and disproportionation, over La_{1x}Sr_xNiO₃ catalysts, 140, 302 TPD, see Temperature-programmed desorption TPIE, see Temperature programmed isotope exchange TPR, see Temperature-programmed reduction Tracer techniques radioactive, for analysis of reactions on industrial catalysts enhanced CO desorption from Pd/Al_2O_3 catalyst due to effect of C_2H_2 and NO in gas phase, 143, 381 kinetics of enhanced CO desorption due to effect of CO in gas phase, 143, 369 Transalkylation alkylaromatics on USY zeolite, effects of structural parameters, 140, 384 Transition metals catalysts of deuterium exchange and hydrogenolysis reactions of 1,2-dimethylhydrazine, 144, 325 Transmission electron microscopy in observation of γ -Al₂O₃-supported Pt catalyst sintering in NO, 144, 60 Tri-iron dodecacarbonyl highly dispersed iron catalyst derived from, precipitated on Al₂O₃, 141, 660 Trimethylbenzene oxidation, in crystalline microporous V-NCL-1 molecular sieve, 143, 275 Tripropylamine -MAPO-36 molecular sieve, crystallinity characterization, 143, 227 Tungsten addenda atom in heteropolyanion, central atom, effect on reaction of esters and esterification catalyzed in homogeneous liquid phase, 143, 437 Al₂O₃-supported catalyst, in chemisorption of CO₂, 139, 688 and Mo, Al₂O₃-supported catalysts, dispersion, effects of F and Mg, 139, 72 modified zeolite, characterization and activity in thiophene hydrosulfurization, 141, 206 and W-Ni, carbon-supported sulfided, catalysts Ni and W environment in, analysis by EXAFS, 139, 525 Tungsten trioxide -Pt, Al₂O₃-supported catalysts, reactions of labeled hexanes on, 139, 256 Tungstosilicic acid, see Silicotungstic acid U Ultrasoft X-ray absorption spectroscopy in analysis of fluorine in catalysts, 142, 368 V Vanadate -pyrazine-2-carboxylic acid system, H₂O₂ oxidation of alkanes and arenes to alkyl peroxides, catalysis, 142, 147 Vanadium Al₂O₃-supported catalyst, in chemisorption of CO₂, 139, 688 effect on molybdovanaphosphoric acid reactivity in primary and secondary structure, 143, 325 pillared rectorite catalysts, 141, 510 H_{3+n}PV_nMo_{12-n}O₄₀, unsupported and heteropolysaltsupported, heteropolyacids, catalytic behavior in test reaction of CH₃OH oxidation, 139, 455 MgO-supported catalysts in oxidative dehydrogenation of propane, effect of preparation methods, 144, 425 -P-O catalysts, selective oxidation of butane to maleic anhydride, promotional effects of Zr, 143, 215 SiO₂-suppported catalysts, CH₄O oxidative dehydrogenation, 142, 1 Vanadium oxide -Fe₂O₃ catalysts, alumina-based, interactions under high-temperature calcination and SO₂ oxidation conditions, 139, 1 loading on SiO₂, effect on butane oxidation, **144**, 202 VO_X, deposits on Rh foil, CO and CO₂ hydrogenation reactivity, **139**, 602 Vanadium pentoxide catalyzed carbon gasification, analysis by scanning tunneling and atomic force microscopy, 140, 543 -MgO-MoO₃ system, butane oxidation and phase equilibria studies, 144, 597 SiO₂-supported catalysts, in partial oxidation of CH₄, 143, 262 support of rhodium catalysts, fresh and reduced, electron optical studies, 140, 173 Vanadium silicates crystalline and microporous with MEL structure FTIR, NMR, and ESR spectroscopy and catalytic oxidation of alkylaromatics over VS-2, 141, 595 selective oxidation of *n*-alkanes and cyclohexane over, **141**, 604 V-NCL-1 molecular sieve, synthesis, characterization, and catalytic properties, 143, 275 Vanadyl pyrophosphate acrylonitrile from propane on, with preadsorbed NH₃ ammonia adsorption mechanism and reaction with C₁, 142, 84 selectivity determination, role of competitive adsorption phenomena, 142, 70 structural disorder in, physicochemical analysis, 141, 671 and (VO)₂P₂O₇ and Mg₃(VO₄)₂-MgO, catalysis of alkanes, selectivity patterns, 140, 226 Vandium catalysts NO over, selective catalytic reduction, role of NH₃ oxidation, **142**, 182 m-,p-Vinylbenzyltriethylammonium chloride -SiO₂, as catalytic support in hydroformylation, analysis, 143, 52 Volatilization Rh and Rh/Ce on SiO_2 and Al_2 in NO + CO, 140, 424 ## W Water inhibition and catalysis in liquid-phase oxidation of hydrocarbons, 141, 721 Water-gas shift reaction reverse, on ZnO, reactant-promoted reaction mechanism, effect of coadsorbates, 140, 575 on Rh-doped CeO₂, reactant-promoted mechanism for, 141, 71 Water vapor effect on growth of tetragonal and monoclinic ZrO₂ crystallites, 139, 329 selective reduction of NO by CH₄ over Co-exchanged ZSM-5, 142, 561 #### X XAFS, see X-ray absorption fine structure XANES, see X-ray absorption near-edge structure XPS, see X-ray photoelectron spectroscopy X-ray absorption fine structure in analysis of Rh/Al₂O₃ after treatment in high-temperature oxidizing environment, 144, 311 in structural analysis of nanophase iron oxide catalyst, 143, 499 X-ray absorption near-edge structure in structural analysis of nanophase iron oxide catalysts, 143, 499 X-ray absorption spectroscopy carbon K-edge, gas oil-derived coke deposits in LZ-210 zeolite, 139, 322 in situ, gallium K-edge, in analysis of Ga in alkane dehydrocyclodimerization catalysts, **140**, 209 X-ray diffraction in analysis of structural disorder in (VO)₂P₂O₇, **141**, 671 surface species formation upon supporting MoO₃ on Al₂O₃ by mechanical mixtures, **141**, 48 dynamic, in analysis of unreduced iron oxide catalyst in Fischer-Tropsch synthesis, 139, 375 X-ray photoelectron spectroscopy in analysis of alkali promotion of Rh/La₂O₃ catalysts, **140**, 453 CO-induced changes in oxidation state of Rh/ MgO catalysts, **140**, 564 model γ-Al₂O₃-supported Re/Pt catalyst prepared from [Re₂Pt(CO)₁₂], **140**, 190 state of Pt in SO₄²-ZrO₂ catalysts, 143, 322 sulfided Pt catalysts, 143, 318 m-Xylene transalkylation on USY zeolite, effects of structural parameters, 140, 384 o-Xylene effective shape-sensitive diffusivity in ZSM-5 zeolites, 142, 691 **Xylenes** over H-ZSM-5 zeolites, surface chemistry, 139, 24 isomerization, and C_7H_8 methylation on H-ZSM-5, 141, 548 oxidation in crystalline microporous V-NCL-1 molecular sieve, 143, 275 ## Y Yttrium support of LiYo CH₄ coupling catalysts, structure and performance: active phases and decay mechanisms, 141, 583 Yttrium oxide doped ZrO₂, CH₄ oxidation on Pt films deposited on, NEMCA effect, 140, 53 ### Z Zeolites alkali cation, catalysis of bimolecular condensation of ethanol to 1-butanol, 142, 37 β, support of Pt catalysts, and Pt/γ-Al₂O₃ catalysts, reforming reactions, comparison, **140**, 526 boron-containing ZSM-5, acid site analysis by TPD of NH₃, C₂H₄, and 1-C₄H₈, 144, 285 cell size units, effects on catalyst activity and deactivation in commercial hydrocracking catalysts during piperdine hydrogenolysis, 135, 481; erratum, 141, 321 cracking catalysts with, relative reactivity of hydrocarbon classes over, pseudocomponent test, 140, 41 CuY, acid catalysis of isobutane and n-pentane, 141, 323 Cu-ZSM-5, adsorption analysis: characterization of ion-exchange Cu properties, 142, 708 faujasite, see Faujasites Fe-Y, selective catalytic reduction of NO by NH₃, kinetic and infrared spectroscopic analysis, 142, 572 Ga-H-ZSM-5 and Ga₁₃-, Al₁₃-, GaAl₁₂-, and Cr-pillar interlayered clay minerals, propane dehydrocyclodimerization, comparison, **142**, 448 in propane conversion: effect of aging on dehydrogenating and acid functions using pyridine as infrared probe, 139, 679 H,Na-Y, characterization with amine desorption, 144, 193 H⁺-pentasil, catalysis of α -ω-diamines, analysis, 144, 556 H-Theta-1, H-Y, and H-ZSM-5, rearrangement of *n*-methylaniline, **143**, 627 HY acidity, role of extralattice Al, 139, 468 and H-SAPO-37 faujasite, protonic acidity, quantitative study by infrared spectroscopy with benzene as probe, 139, 81 and H-ZSM-5 combinations catalytic cracking of hydrocarbon mixture on, 139, 289 in hydrocarbon cracking and isomerization, 140, 150 2-methylpentane cracking effect of dilution by N2, 142, 499 effect of dilution by N_2 , H_2 , CO_2 , and CO, 144, 377 in presence of chain mechanisms, **142**, 465 and NaHY, support of Re catalysts, hydrogenolysis of neopentane over, effect of protons, 141, 407 H-ZSM-5 alkane dehydrocyclodimerization catalysts, Ga chemical state in, analysis by in situ Ga K-edge X-ray absorption spectroscopy, 140, 209 -Al₂O₃-Pt catalysts, acidity, intercrystalline mass transfer, and catalytic properties, effect of coke deposition, 144, 16 in catalysis of aldehydes, 1,1-diacetate formation, 141, 308 CH₄ conversion over, role of CO and ketene in formation of initial C-C bond, 142, 602 C_7H_8 methylation and xylene isomerization, 141, 548 Ga-H-ZSM-5 preparation by GaCl₃ sublimation in H-ZSM-5, characterization, **141**, 729 support of Pd catalysts, hydrocarbon-induced agglomeration of Pd particles in, 140, 481 surface chemistry of xylenes over, 139, 24 with intermetallic Pt-Cr clusters, aromatization and reforming catalyst models oxidation states, dispersion, and local structures, characterization, 141, 250 structure-function relationships, 141, 266 Ir carbonyl clusters in NaX cages: synthesis, characterization, and selective catalysis of CO hydrogenation, 142, 585 KL, support of Pt in hexane aromatization catalysts, catalyst performance and Pt particle size and location, effect of sulfur, 139, 48 K-LTL, H-LTL, K-MAZ, and H-MAZ, support of Pt catalysts, H₂ temperature-programmed desorption, 143, 395 L nonacidic, -Pt catalyst, CO adsorbed on, analysis by infrared spectroscopy, 141, 465 support of Pd catalysts, in neopentane conver- sion: effects of protons, ions, and zeolite structure, 141, 337 linear channels, local destruction, resulting increase in catalytic activity: effect of reduction temperature on heptane conversion over H-mordenite supported Pt catalyst, 144, 1 LZ-210, gas oil-derived coke deposits in, carbon K-edge X-ray absorption spectroscopy, 139, 322 Mg-ZSM-5, P-modified, in catalysis of CH₃Cl to C_2H_4 and C_3H_6 , 143, 32 mordenite, see Mordenites NaX, adsorption and reaction of CO, O₂, and CO₂, effect of oxidizing and reducing pretreatment, microcalorimetric study, 140, 443 NaY, support of PdCo catalysts, CO hydrogenation: effect of ion hydration on metal phases and selectivity, 139, 444 Pt catalysts, oxidation of reduced platinum, 144, 506 oxygen desorption during NO decomposition, analysis, 143, 520 pyridine absorbed on, infrared absorption bands, integrated molar extinction coefficients, 141, 347 REY cracking of cumene, associated catalyst deactivation by coking, evaluation, 140, 510 and SiO₂-Al₂O₃ matrix, cracking of *n*-hexadecane, selectivity and yield of components, **141**, 148 shape selectivity analysis based on sorption data, 142, 303 support of H-LTL, K-LTL, and H-MAZ, metalsupport interface structure, effect of H pretreatment, 144, 611 **USHY** 2-methylpentane cracking on, kinetics, **140**, 243 *n*-nonane cracking on, kinetics, **140**, 262 USY mesopore formation and Al migration, electron microscopic analysis, 140, 395 transalkylation of alkylaromatics, effects of structural parameters, 140, 384 WO₃-modified, characterization and activity in thiophene hydrosulfurization, 141, 206 Y Fe-supported, TPR and sulfiding analysis, 142, 274 support of Ru catalysts, effect of dealumination, 142, 531 ZSM-5 argon sorption in, 139, 19 cobalt-exchanged, selective reduction of NO over, effect of water vapor, 142, 561 crystals, active site distribution, analysis by FTIR microscopy, 143, 388 -Cu monolith catalyst, NO reduction by hydrocarbons under lean conditions, steady-state kinetics, 142, 418 diffusities, effects of polarity, cation density, and site occupancy, 144, 109 disproportionation of *n*-propylbenzene on, associated coke formation, **142**, 664 ferrisilicate analogs, catalytic properties in N₂O decomposition: role of iron, 139, 435 n-hexane cracking in: in situ ¹³C cross-polarization magic-angle-spinning NMR and flow reactor/GC analyses, 144, 495 shape-selective diffusivities, analysis, **142**, 691 support of Cu ion-containing catalysts, N₂O photocatalytic decomposition, **141**, 725 Ziegler catalysts Si₂H₂O-supported, for ethylene polymerization, 141, 524 Zinc -Pd, SiO₂-supported catalysts, ester hydrogenation, 140, 406 Zinc oxide -Cu, Al₂O₃-supported catalysts, comparison of methanol synthesis from CO/H₂ and CO₂/H₂, 144, 414 Cu films on, chemisorption of CO, analysis by temperature programmed desorption, 141, 380 gas adsorption on, ESR, FTIR spectroscopy, and Microwave Hall Effect analysis, 140, 585 reverse water-gas shift reaction on, reactant-promoted reaction mechanism, effect of coadsorbates, 140, 575 support of Ba catalysts, oxidative coupling of CH₄, 143, 286 Pd catalysts, hydrogenation of 1-butene and 1,3-butadiene mixtures over, 141, 566 Ru catalysts, NO-CO interaction and NO adsorption, 141, 486 Zirconium Ln₂Zr₂O₇, CH₄ oxidative coupling over, effects of bond energy, **140**, 328 promotional effects on selective oxidation of butane to maleic anhydride on VPO catalysts, **143**, 215 and SO₄², support of Pt catalyst, state of Pt, **143**, 322 Zirconium dioxide SO₄-supported catalysts, Lewis site acid strength, scaling by EPR and NMR, 140, 497 Zirconium hydroxide sulfated, superacid and catalytic properties, 143, 616 Zirconium oxide Ag catalyst-electrodes deposited on, oxidative coupling of CH₄, 144, 333 alkali metal compound-promoted catalysts, oxidative coupling of CH₄ over, 139, 304 effect of selectivity for oxidative coupling of CH₄, 141, 279 Pd catalyst prepared from amorphous Pd₁Zr₃ alloy, CH₄ oxidation over, **141**, 494 -SO₄, support of Pt catalysts, isomerization of alkanes, promotion by adamantyl hydride transfer species, 144, 238 sulfate-doped catalysts, surface acidity, 142, 349 support of CrO₃ catalysts, surface chemistry, analysis by Raman spectroscopy, **142**, 166 Pt catalysts, propane oxidation over analysis, propane oxidation, 139, 268 effect of sulfation, 144, 484 Re₂O₇ catalysts, analysis by Raman spectroscopy, **141**, 419 thermal stability as catalyst support: kinetics and modeling, 139, 329 Y₂O₃-doped, CH₄ oxidation on Pt films deposited on, NEMCA effect, **140**, 53